云南省南涧县民族中学2026届数学高二上期末监测模拟试题含解析_第1页
云南省南涧县民族中学2026届数学高二上期末监测模拟试题含解析_第2页
云南省南涧县民族中学2026届数学高二上期末监测模拟试题含解析_第3页
云南省南涧县民族中学2026届数学高二上期末监测模拟试题含解析_第4页
云南省南涧县民族中学2026届数学高二上期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省南涧县民族中学2026届数学高二上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.102.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.3.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.4.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形5.直线的倾斜角为()A.-30° B.60°C.150° D.120°6.如图,四面体-,是底面△的重心,,则()A B.C. D.7.不等式的解集为()A. B.C.或 D.或8.直线l的方向向量为,且l过点,则点到l的距离为()A B.C. D.9.圆与圆的位置关系为()A.内切 B.相交C.外切 D.相离10.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.11.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.等差数列前项之和为,若,则________14.已知函数,若,则________.15.在不等边△ABC(三边均不相等)中,三个内角A,B,C所对的边分别为a,b,c,且有,则角C的大小为________16.数列中,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.18.(12分)如图,在棱长为2的正方体中,,分别为线段,的中点.(1)求点到平面的距离;(2)求平面与平面夹角的余弦值.19.(12分)函数,.(1)讨论函数的单调性;(2)若在上恒成立,求实数的取值范围.20.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.21.(12分)三棱锥各棱长为2,E为AC边上中点(1)证明:面BDE;(2)求二面角的正弦值22.(10分)已知椭圆的离心率为,点在椭圆C上.(1)求椭圆C的标准方程;(2)已知直线与椭圆C交于P,Q两点,点M是线段PQ的中点,直线过点M,且与直线l垂直.记直线与y轴的交点为N,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C2、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A3、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.4、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.5、C【解析】根据直线斜率即可得倾斜角.【详解】设直线的倾斜角为由已知得,所以直线的斜率,由于,故选:C.6、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B7、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A8、C【解析】利用向量投影和勾股定理即可计算.【详解】∵,∴又,∴在方向上的投影,∴P到l距离故选:C.9、C【解析】写出两圆的圆心和半径,求出圆心距,发现与两圆的半径和相等,所以判断两圆外切【详解】圆的标准方程为:,所以圆心坐标为,半径;圆的圆心为,半径,圆心距,所以两圆相外切故选:C10、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A11、A【解析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,属于中档题.12、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用等差数列前项和公式和等差数列的性质求解即可.【详解】由已知条件得,故答案为:.14、【解析】求出导函数,确定导函数奇函数,然后可求值【详解】由已知,它是奇函数,∴故答案为:【点睛】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键15、【解析】由正弦定理可得,又,,,,,在三角形中,.考点:1正弦定理;2正弦的二倍角公式.16、1【解析】根据可得,则,所以可得数列是以6为周期周期数列,再由计算出的值,再利用对数的运算性质可求得结果【详解】因为,所以,所以,所以数列是以6为周期的周期数列,因为,,所以,所以,所以所以,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.18、(1);(2).【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系.可根据题意写出各个点的坐标,进而求出平面的法向量和的坐标,点到平面的距离.计算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出来,平面与平面夹角的余弦值为,计算即可求出答案.【小问1详解】以为原点,为轴,为轴,为轴,建立如下图所示的空间直角坐标系.由于正方体的棱长为2和,分别为线段,的中点知,.设平面的法向量为..则..故点到平面的距离.【小问2详解】平面的法向量,平面与平面夹角的余弦值.19、(1)答案见解析;(2).【解析】(1)求出函数的定义域为,求得,分、、三种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)构造函数,由题意可知恒成立,对实数分和两种情况讨论,利用导数分析函数在区间上的单调性,验证是否成立,由此可得出实数的取值范围.【详解】(1)函数的定义域为,.(i)当时,,函数在上单调递增;(ii)当时,令得.若,则;若,则.①当时,,函数在上单调递增;②当时,,当时,,函数单调递增;当时,,函数单调递减;综上,可得,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减;(2)设,,则.当时,单调递增,则.所以,函数在上单调递增,且.当时,,于是,函数在上单调递增,恒成立,符合题意;当时,由于,,,所以,存在,使得.当时,,函数单调递减;当时,,函数单调递增.故,不符合题意,综上所述,实数的取值范围是.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,考查分类讨论思想的应用,属于难题.20、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.21、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理即可证明;(2)建立如图所示坐标系,则,易知平面BCD的法向量,利用空间向量法求出面BDE的法向量,结合向量的数量积计算即可得出结果.【小问1详解】正四面体中各面分别是正三角形,E为AC边上中点,,又平面,且,所以面BDE【小问2详解】建立如图所示坐标系,于是,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论