版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市上海交大附中数学高二上期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.2.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.123.对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)5.下列命题中的假命题是()A.若log2x<2,则0<x<4B.若与共线,则与的夹角为0°C.已知各项都不为零的数列{an}满足an+1-2an=0,则该数列为等比数列D.点(π,0)是函数y=sinx图象上一点6.过点,的直线的斜率等于2,则的值为()A.0 B.1C.3 D.47.如图,在三棱柱中,E,F分别是BC,中点,,则()A.B.C.D.8.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆9.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.10.“,”的否定是A., B.,C., D.,11.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.1212.的展开式中的系数为,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.14.已知命题“,”为假命题,则实数m的取值范围为______15.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______16.过抛物线的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图像为曲线,点、.(1)设点为曲线上在第一象限内的任意一点,求线段的长(用表示);(2)设点为曲线上任意一点,求证:为常数;(3)由(2)可知,曲线为双曲线,请研究双曲线的性质(从对称性、顶点、渐近线、离心率四个角度进行研究).18.(12分)已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围19.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和20.(12分)已知数列是等差数列,为其前n项和,,(1)求的通项公式;(2)若,求证:为等比数列21.(12分)在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.22.(10分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.2、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B3、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.4、D【解析】根据图形可得(1)具有函数关系;(2)(3)的散点分布在一条直线或曲线附近,具有相关关系;(4)的散点杂乱无章,不具有相关关系.【详解】对(1),所有的点都在曲线上,故具有函数关系;对(2),所有的散点分布在一条直线附近,具有相关关系;对(3),所有的散点分布在一条曲线附近,具有相关关系;对(4),所有的散点杂乱无章,不具有相关关系.故选:D.5、B【解析】四个选项中需要分别利用对数函数的性质,向量共线的定义,等比数列的定义以及三角函数图像判断,根据题意结合知识点,即可得出结果.【详解】选项A,由于此对数函数单调递增,并且结合对数函数定义域,即可求得结果,所以是真命题;选项B,向量共线,夹角可能是或,所以是假命题;选项C,将式子变形可得,符合等比数列定义,所以是真命题;选项D,将点代入解析式,等号成立,所以是真命题;故选B.【点睛】本题考查命题真假的判定,根据题意结合各知识点即可判断真假,需要熟练掌握对数函数、等比数列、向量夹角以及三角函数的基本性质.6、A【解析】利用斜率公式即求.【详解】由题可得,∴.故选:A7、D【解析】根据空间向量线性运算的几何意义进行求解即可.【详解】,故选:D8、A【解析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A9、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题10、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.11、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.12、B【解析】根据二项式展开式的通项,先求得x的指数为1时r的值,再求得a的值.【详解】由题意得:二项式展开式的通项为:,令,则,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.14、【解析】根据命题的否定与原命题真假性相反,即可得到,为真命题,则,从而求出参数的取值范围;【详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,解得;故答案:15、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.16、2【解析】分别过A,B作准线的垂线,垂足分别为,,由可求.【详解】分别过A,B作准线的垂线,垂足分别为,,设,,则,∴,∴.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)具体见解析;(3)具体见解析.【解析】(1)由两点间的距离公式求出距离,进而将式子化简即可;(2)求出,进而讨论两种情况,然后结合基本不等式即可证明问题;(3)根据为双曲线的焦点,结合双曲线的图形特征即可求得该双曲线的相关性质.【小问1详解】由题意,.【小问2详解】设,由(1),.若x>0,则,当且仅当时取“=”,则,,所以.若x<0,则,当且仅当时取“=”,则,,所以.综上:,为常数.【小问3详解】易知函数:为奇函数,则其图象关于原点对称.由(2)可知,曲线为双曲线,为双曲线的焦点,则它关于直线对称,还关于与垂直且过原点的直线对称.,则,易得.综上:双曲线关于原点(0,0)对称,且关于直线对称.容易知道,直线是双曲线C的渐近线.易知线段是双曲线的实轴,将代入双曲线解得顶点:.于是实轴长为焦距为,则离心率.18、或【解析】首先根据复数的乘方及复数模的计算公式求出命题为真时参数的取值范围,再根据椭圆的性质求出命题为真时参数的取值范围,依题意为假,为真,即可求出参数的取值范围;【详解】解:因为,,,,所以,所以,所以为真时,因为方程表示焦点在轴上的椭圆,所以,所以,即为真时,所以为假时参数的取值范围为或,因为命题为真,命题或为真,所以为假,为真,或19、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以20、(1)(2)证明见解析【解析】(1)由已知条件列出关于的方程组,解方程组求出,从而可求出的通项公式,(2)由(1)可得,然后利用等比数列的定义证明即可【小问1详解】设数列的公差为,则由,,得,解得,所以【小问2详解】证明:由(1)得,所以,()所以数列是以9为公比,27为首项的等比数列21、(1);(2)直线与圆O相切,理由见解析.【解析】(1)法1:设外接圆为,由点在圆上,将其代入方程求参数,即可得圆的方程;法2:利用斜率的两点式易得,则是△外接圆的直径,进而求圆心坐标、半径,即可得圆的标准方程.(2)由题设有直线垂直于x轴,根据直线平行于直线及所过的点写出直线l的方程,求圆O的圆心与直线距离,并与半径比大小,即可确定它们的位置关系.【小问1详解】法1:设过三点的圆的方程为,则,解得,所求圆的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026福建泉州幼儿师范高等专科学校招聘15人笔试模拟试题及答案解析
- 2025年中国铁路上海局集团有限公司招聘本科及以上学历毕业生1232人一(公共基础知识)综合能力测试题附答案
- 2025江苏徐州徐工环境技术有限公司招聘33人(公共基础知识)综合能力测试题附答案
- 2025年福建省福规建设发展有限公司招聘7人考前自测高频考点模拟试题附答案
- 2025山东芳蕾田园综合体有限公司招聘17人模拟试卷附答案
- 2026河南郑州西区中医院招聘56人笔试备考题库及答案解析
- 2025年下半年鹤壁市人民医院招聘高层次人才5人考试参考题库附答案
- 2025年绥化市兰西县企盼人才共赢未来就业大集企业专场招聘备考题库附答案
- 2026福建龙岩连城县教育局招聘紧缺学科中学教师90名笔试模拟试题及答案解析
- 2026广东江门市人民医院招聘服务辅助岗2名笔试参考题库及答案解析
- 塔司、信号工安全晨会(班前会)
- 《电力建设安全工作规程》-第1部分火力发电厂
- 2024全国职业院校技能大赛ZZ060母婴照护赛项规程+赛题
- 回顾性临床研究的设计和分析
- 配电一二次融合技术的发展应用
- 钢板铺设安全施工方案
- 八年级物理上册期末测试试卷-附带答案
- 硬件设计与可靠性
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- 经纬度丛书 秦制两千年:封建帝王的权力规则
- ppt素材模板超级玛丽
评论
0/150
提交评论