版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省闽侯市第六中学2026届高一数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)2.已知,,c=40.1,则()A. B.C. D.3.已知实数,,,则,,的大小关系为()A. B.C. D.4.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为()A.2 B.C.1 D.5.下列函数中,与函数是同一函数的是()A. B.C. D.6.已知函数,且,则A. B.0C. D.37.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定8.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②9.已知f(x-1)=2x-5,且f(a)=6,则a等于()A. B.C. D.10.下列各组函数表示同一函数的是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________13.设,关于的方程有两实数根,,且,则实数的取值范围是___________.14.已知单位向量与的夹角为,向量的夹角为,则cos=_______15.若函数是R上的减函数,则实数a的取值范围是___16.若,则_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时)18.如图,在棱长为1正方体中:(1)求异面直线与所成的角的大小;(2)求三棱锥体积19.已知集合,(Ⅰ)当时,求;;(Ⅱ)若,求实数的值20.如图,已知四棱锥中,底面为平行四边形,点,,分别是,,的中点(1)求证:平面;(2)求证:平面平面21.已知,向量,.(1)当实数x为何值时,与垂直.(2)若,求在上的投影.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.2、A【解析】利用指对数函数的性质判断指对数式的大小.【详解】由,∴.故选:A.3、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.4、D【解析】圆心为,点到直线的距离为.故选D.5、C【解析】确定定义域相同,对应法则相同即可判断【详解】解:定义域为,A中定义域为,定义域不同,错误;B中化简为,对应关系不同,错误;C中定义域为,化简为,正确;D中定义域为,定义域不同,错误;故选:C6、D【解析】分别求和,联立方程组,进行求解,即可得到答案.【详解】由题意,函数,且,,则,两式相加得且,即,,则,故选D【点睛】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.7、C【解析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C.由折线图可看出乙的波动比甲大,所以甲更稳定.故选C8、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D9、B【解析】先用换元法求出,然后由函数值求自变量即可.【详解】令,则,可得,即,由题知,解得.故选:B10、A【解析】根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.【详解】解:对于A,两个函数的定义域都是,,对应关系完全一致,所以两函数是相同函数,故A符合题意;对于B,函数的定义域为,函数的定义域为,故两函数不是相同函数,故B不符题意;对于C,函数的定义域为,函数的定义域为,故两函数不是相同函数,故C不符题意;对于D,函数的定义域为,函数的定义域为,故两函数不是相同函数,故D不符题意.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.12、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).13、【解析】结合一元二次方程根的分布的知识列不等式组,由此求得的取值范围.【详解】令,依题意关于的方程有两实数根,,且,所以,即,解得.故答案为:14、【解析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【点睛】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.15、【解析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【详解】由题知故答案为:.16、【解析】平方得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)3333辆/小时【解析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200]上取得最大值综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时18、(1)45°;(2)【解析】(1),则异面直线与所成的角就是与所成的角,从而求得(2)根据三棱锥的体积进行求解即可【详解】解:(1)∵,∴异面直线与所成的角就是与所成的角,即故异面直线与所成的角为45°(2)三棱锥的体积【点睛】本题主要考查了直线与平面之间的位置关系,以及几何体的体积和异面直线所成角等有关知识,考查数形结合、化归与转化的数学思想方法,空间想象能力、运算能力和推理论证能力,属于基础题19、(Ⅰ),(Ⅱ)m的值为8【解析】由,(Ⅰ)当m=3时,,则(Ⅱ),此时,符合题意,故实数m的值为820、(1)见解析(2)见解析【解析】(1)根据三角形的中位线,可得,由此证得平面.(2)利用中位线证明,,故,由(1)得,证明分别平行于平面,由此可得平面平面.【详解】(1)由题意:四棱锥的底面为平行四边形,点,,分别是,,的中点,∴是的中点,∴,又∵平面,平面,∴平面(2)由(1),知,∵,分别是,的中点,∴,又∵平面,平面,平面同理平面,平面,平面,,∴平面平面【点睛】本题主要考查线面平行的判定定理,考查面面平行的判定定理.要证明线面平行,需在平面内找到一条直线和要证的直线平行,一般寻找的方法有三种:一是利用三角形的中位线,二是利用平行四边形,三是利用面面平行.要证面面平行,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业园区货运通道优化方案
- 规范制度完善流程
- 鸭棚通风管理制度规范
- 公章用字规范制度
- 铁路规章制度及规范
- 园林设计中的可持续性策略
- 市政工程环境监测与评估方案
- 燃气市场发展趋势研究
- 建筑室内装饰风格创新设计
- 施工图纸变更及管理方案
- 2025年江苏省公务员录用考试行测题A类答案及解析
- 道路危险货物运输企业安全隐患排查与治理制度
- 京东物流合同范本
- 养老机构安全生产责任制清单
- 《红岩》中考试题(解析版)-2026年中考语文名著复习核心知识梳理与专项训练
- 非洲鼓基础知识培训课件
- 2026-2031中国酿酒设备行业市场现状调查及投资前景研判报告
- KET考试必背核心短语(按场景分类)
- 2025四川产业振兴基金投资集团有限公司应届毕业生招聘9人笔试历年难易错考点试卷带答案解析2套试卷
- 2025年智能眼镜行业分析报告及未来发展趋势预测
- 精防医生考试试题及答案
评论
0/150
提交评论