江西省抚州市临川二中2026届高二数学第一学期期末教学质量检测试题含解析_第1页
江西省抚州市临川二中2026届高二数学第一学期期末教学质量检测试题含解析_第2页
江西省抚州市临川二中2026届高二数学第一学期期末教学质量检测试题含解析_第3页
江西省抚州市临川二中2026届高二数学第一学期期末教学质量检测试题含解析_第4页
江西省抚州市临川二中2026届高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川二中2026届高二数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.2.为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60 B.120C.150 D.2403.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.104.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.55.若直线与曲线只有一个公共点,则m的取值范围是()A. B.C.或 D.或6.若函数的导函数为偶函数,则的解析式可能是()A. B.C. D.7.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.8.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.9.已知实数x,y满足,则的取值范围是()A. B.C. D.10.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.11.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.12.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线左、右焦点分别为,,点P是双曲线左支上一点且,则______14.已知数列an满足,则__________15.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.16.过点,且周长最小的圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值18.(12分)已知椭圆的左、右焦点分别为、,离心率,且过点(1)求椭圆C的方程;(2)已知过的直线l交椭圆C于A、B两点,试探究在平面内是否存在定点Q,使得是一个确定的常数?若存在,求出点Q的坐标;若不存在,说明理由19.(12分)如图,在四棱锥中,平面平面,底面是菱形,E为的中点(1)证明:(2)已知,求二面角的余弦值20.(12分)已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由21.(12分)已知是抛物线的焦点,直线交拋物线于、两点.(1)若直线过点且,求;(2)若平分线段,求直线的方程.22.(10分)某初中学校响应“双减政策”,积极探索减负增质举措,优化作业布置,减少家庭作业时间.现为调查学生的家庭作业时间,随机抽取了名学生,记录他们每天完成家庭作业的时间(单位:分钟),将其分为,,,,,六组,其频率分布直方图如下图:(1)求的值,并估计这名学生完成家庭作业时间的中位数(中位数结果保留一位小数);(2)现用分层抽样的方法从第三组和第五组中随机抽取名学生进行“双减政策”情况访谈,再从访谈的学生中选取名学生进行成绩跟踪,求被选作成绩跟踪的名学生中,第三组和第五组各有名的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.2、C【解析】结合排列组合的知识,分两种情况求解.【详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C3、C【解析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【详解】由双曲线可得根据双曲线的定义可得:故选:C4、C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C5、D【解析】根据曲线方程的特征,发现曲线表示在轴上方的图象,画出图形,根据图形上直线的三个特殊位置,当已知直线位于直线位置时,把已知直线的解析式代入椭圆方程中,消去得到关于的一元二次方程,由题意可知根的判别式等于0即可求出此时对应的的值;当已知直线位于直线及直线的位置时,分别求出对应的的值,写出满足题意得的范围,综上,得到所有满足题意得的取值范围【详解】根据曲线,得到,解得:;,画出曲线的图象,为椭圆在轴上边的一部分,如图所示:当直线在直线的位置时,直线与椭圆相切,故只有一个交点,把直线代入椭圆方程得:,得到,即,化简得:,解得或(舍去),则时,直线与曲线只有一个公共点;当直线在直线位置时,直线与曲线刚好有两个交点,此时,当直线在直线位置时,直线与曲线只有一个公共点,此时,则当时,直线与曲线只有一个公共点,综上,满足题意得的范围是或故选:D6、C【解析】根据题意,求出每个函数的导函数,进而判断答案.【详解】对A,,为奇函数;对B,,为奇函数;对C,,为偶函数;对D,,既不是奇函数也不是偶函数.故选:C.7、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.8、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.9、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.10、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.11、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A12、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据双曲线方程求出,再根据双曲线的定义可知,即可得到、,再由正弦定理计算可得;【详解】解:因为双曲线为,所以、,因为点P是双曲线左支上一点且,所以,所以,,在中,由正弦定理可得,所以;故答案为:14、2019【解析】将已知化为代入可以左右相消化简,将已知化为,代入可以上下相消化简,再全部代入求解即可.【详解】由知故所以故答案为:201915、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.16、【解析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)根据给定条件求出椭圆半焦距c,长短半轴长a,b即可得解.(2)设出直线的方程,再与椭圆C的方程联立,求出弦AB长及点P到直线的距离,然后求出面积的表达式并求其最大值即得.【小问1详解】设椭圆的标准方程为,依题意,半焦距,,即,所以椭圆的标准方程为.【小问2详解】依题意,设直线,,由消去y并整理得:,由,解得,则有,,于是得,而点到直线的距离为,因此,的面积,当且仅当,即时取“=”,所以面积最大值为1.【点睛】结论点睛:直线l:y=kx+b上两点间的距离;直线l:x=my+t上两点间的距离.18、(1)(2)存在,定点【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)对直线的斜率是否存在进行分类讨论,设出直线的方程并与椭圆方程联立,结合是常数列方程,从而求得定点的坐标.小问1详解】,,由题可得:.【小问2详解】当直线AB的斜率存在时,设直线AB的方程为,设,,联立方程组,整理得,可得,所以则恒成立,则,解得,,,此时,即存在定点满足条件当直线AB的斜率不存在时,直线AB的方程为x=-2,可得,,设要使得是一个常数,即,显然,也使得成立;综上所述:存在定点满足条件.19、(1)详见解析(2)【解析】(1)利用垂直关系,转化为证明线面垂直,即可证明线线垂直;(2)利用垂直关系,建立空间直角坐标系,分别求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小问1详解】如图,取的中点,连结,,,因为,所以,因为平面平面,平面平面,所以平面,且平面,所以,又因为底面时菱形,所以,又因为点分别为的中点,所以,所以,且,所以平面,又因为平面,所以;【小问2详解】由(1)可知,平面,连结,因为,,点为的中点,所以,则两两垂直,以点为坐标原点,建立空间直角坐标系,如图所示:则,,,所以,,,,,,所以,,,设平面的法向量为,则,令,则,,故,设平面的法向量为,所以,因为二面角为锐二面角,所以二面角的余弦值为.20、(1);(2)存在,理由见解析.【解析】(1)利用离心率,短轴长求出a,b,即可求得椭圆方程.(2)联立直线与椭圆方程,利用韦达定理计算判定,由M为线段AB中点即可确定存在常数推理作答.【小问1详解】因椭圆的短轴长是2,则,而离心率,解得,所以椭圆方程为.【小问2详解】存在常数,使恒成立,

由消去y并整理得:,设,,则,,又,,,则有,而线段AB的中点为M,于是得,并且有所以存在常数,使恒成立.21、(1);(2).【解析】(1)分析可知直线的方程为,将直线的方程与抛物线方程联立,求出点的坐标,利用抛物线的定义可求得;(2)利用点差法可求得直线的斜率,利用点斜式可得出直线的方程.【小问1详解】解:设点、,则直线的倾斜角为,易知点,直线的方程为,联立,可得,由题意可知,则,,因此,.【小问2详解】解:设、,若轴,则线段的中点在轴上,不合乎题意,所以直线的斜率存在,因为、在抛物线上,则,两式相减得,又因为为的中点,则,所以,直线的斜率为,此时,直线的方程为,即.22、(1);这名学生完成家庭作业时间的中位数约为分钟(2)【解析】(1)由频率分布直方图频率之和为,建立方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论