版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市浦东新区普通高中高二上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.2.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.123.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.54.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.5.若动圆的圆心在抛物线上,且恒过定点,则此动圆与直线()A.相交 B.相切C.相离 D.不确定6.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.97.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件8.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.9.数列的一个通项公式为()A. B.C. D.10.已知函数的导函数为,且满足,则()A. B.C. D.11.函数单调减区间是()A. B.C.和 D.12.已知且,则下列不等式恒成立的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.14.执行如图所示的程序框图,则输出的n的值为__.15.若,均为正数,且,(1)的最大值为;(2)的最小值为;(3)的最小值为;(4)的最小值为,则结论正确的是__________16.已知向量,且,则实数________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2026届我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)18.(12分)已知直线经过椭圆的右焦点,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)以椭圆的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为,试判断的周长是否为定值.若是,求出该定值19.(12分)如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.20.(12分)已知直线和,设a为实数,分别根据下列条件求a的值:(1)(2)21.(12分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.22.(10分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B2、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B3、C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C4、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5、B【解析】根据题意得定点为抛物线的焦点,为准线,进而根据抛物线的定义判断即可.【详解】解:由题知,定点为抛物线的焦点,为准线,因为动圆的圆心在抛物线上,且恒过定点,所以根据抛物线的定义得动圆的圆心到直线的距离等于圆心到定点,即圆心到直线的距离等于动圆的半径,所以动圆与直线相切.故选:B6、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D7、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D8、B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.9、A【解析】根据规律,总结通项公式,即可得答案.【详解】根据规律可知数列的前三项为,所以该数列一个通项公式为故选:A10、C【解析】求出导数后,把x=e代入,即可求解.【详解】因为,所以,解得故选:C11、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B12、C【解析】∵且,∴∴选C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.14、5【解析】明确程序运行的顺序,写出每次循环的m,n的值,直到判断符合条件时结束,即可得到结果.【详解】第一次循环,m=3,n=2;第二次循环,m=6,n=3;第三次循环,m=9,n=4;第四次循环,m=12,n=5,此时m+n>15,跳出循环,故答案为:5.15、(1)(2)(4).【解析】利用基本不等式求的最大值可判断(1);利用“”的妙用以及基本不等式可判断(2);将所求代数式转化为关于的二次函数结合由二次函数的性质可得最值判断C、D,进而可得正确答案.【详解】对于(1):因为,均为正数,且,则有,当且仅当时等号成立,即的最大值为,故(1)正确;对于(2):因为,当且仅当时等号成立,即的最小值为,故(2)正确;对于(3):因为,所以,在上单调递减,无最小值,故(3)不正确;对于(4):,当且仅当时等号成立,即的最小值为,故(4)正确.故答案为:(1)(2)(4).16、【解析】,利用向量的数量积的坐标运算即可.【详解】,则,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,②,①﹣②得亿元,而总投资为亿元,因为,则到2027年年底,该集团能通过该品牌汽车实现盈利18、(1)(2)周长是定值,且定值为4【解析】(1)首先求出直线与轴的交点,即可求出,再根据离心率求出,最后根据求出,即可得解;(2):设直线的方程为、、,联立直线与椭圆方程,消元列出韦达定理,即可表示出弦的长,再根据直线与圆相切,则圆心到直线的距离等于半径,即可得到,再求出、,最后根据计算即可得解;【小问1详解】解:因为经过椭圆的右焦点,令,则,所以椭圆的右焦点为,可得:,又,可得:,由,所以,∴椭圆的标准方程为;【小问2详解】解:设直线的方程为,由得:,所以,设,,则:,所以.因为直线与圆相切,所以,即,所以,因为,又,所以,同理.所以,即的周长是定值,且定值为419、(Ⅰ)见解析;(Ⅱ).【解析】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值.试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.从而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以APH是PA与平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.从而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα==.所以直线PA与平面PCE所成角的正弦值为.考点:线线平行、线面平行、向量法.20、(1)a=4或a=-2(2)a=【解析】(1)根据,由a(a-2)-2×4=0求解;(2)根据,由4a=-2(a-2)求解.【小问1详解】解:因为,所以a(a-2)-2×4=0,解得a=4或a=-2所以当时,a=4或a=-2;【小问2详解】因为,所以4a=-2(a-2),解得a=检验:此时,,成立所以当时,a=.21、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即可得到数列的通项公式;(Ⅱ)根据(Ⅰ)可求得的通项公式,用分组求和法可得其前项和.试题解析:(Ⅰ)设等差数列的公差为,因,且,,成等比数列,即,,成等比数列,所以有,即,解得或(舍去),所以,,数列的通项公式为.(Ⅱ)由(Ⅰ)知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职会计信息化实训(信息化实训)试题及答案
- 2025年中职市政工程施工(道路施工技术)试题及答案
- 2025年大学生物(细胞结构)试题及答案
- 2025年大学数字媒体技术(电商美工设计)试题及答案
- 2026年酒店前台(VIP客户接待)试题及答案
- 2025年高职林业技术(森林资源管理)试题及答案
- 2025年高职第二学年(市场营销)营销渠道拓展试题及答案
- 2026年智慧农业大数据平台项目可行性研究报告
- 2025年高职(现代农业技术)生态种植综合测试题及答案
- 2026年餐饮管理(餐厅服务规范)试题及答案
- JG/T 214-2017建筑门窗五金件插销
- 10.在片SOLT校准件校准规范建议书
- 路树采伐协议书
- T∕CECS 21-2024 超声法检测混凝土缺陷技术规程
- 广西南宁市本年度(2025)小学一年级数学统编版专题练习(上学期)试卷及答案
- 通信登高作业管理制度
- 上海市杨浦区2024-2025学年六年级上学期期末考试数学试卷(解析版)
- ERCP治疗胆总管结石的护理
- 2025年档案管理员试题及答案
- 2025年度大蒜品牌授权与合作推广合同
- “正则动量”解决带电粒子在磁场中的运动问题
评论
0/150
提交评论