昭通市重点中学2026届高二上数学期末考试试题含解析_第1页
昭通市重点中学2026届高二上数学期末考试试题含解析_第2页
昭通市重点中学2026届高二上数学期末考试试题含解析_第3页
昭通市重点中学2026届高二上数学期末考试试题含解析_第4页
昭通市重点中学2026届高二上数学期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

昭通市重点中学2026届高二上数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在下列函数中,最小值为2的是()A. B.C. D.2.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个3.即空气质量指数,越小,表明空气质量越好,当不大于100时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是A.这天的的中位数是B.天中超过天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这天的的平均值为4.设是公差的等差数列,如果,那么()A. B.C. D.5.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.26.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题7.已知点是抛物线上的动点,过点作圆的切线,切点为,则的最小值为()A. B.C. D.8.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.9.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.10.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.11.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.412.现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6 B.7C.9 D.15二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与平行,则___________.14.在正方体中,二面角的大小为__________(用反三角表示)15.已知函数,若在上是增函数,则实数的取值范围是________16.已知数列前项和为,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上的点M(5,m)到焦点F的距离为6.(1)求抛物线C的方程;(2)过点作直线l交抛物线C于A,B两点,且点P是线段AB的中点,求直线l方程.18.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.19.(12分)已知函数.(1)讨论函数的单调性;(2)若函数有两个不同的零点,求实数的取值范围.20.(12分)两人下棋,每局均无和棋且获胜的概率为,某一天这两个人要进行一场五局三胜的比赛,胜者赢得2700元奖金,(1)分别求以获胜、以获胜的概率;(2)若前两局双方战成,后因为其他要事而终止比赛,间,怎么分奖金才公平?21.(12分)在数列中,,,数列满足(1)求证:数列是等比数列,并求出数列的通项公式;(2)数列前项和为,且满足,求的表达式;(3)令,对于大于的正整数、(其中),若、、三个数经适当排序后能构成等差数列,求符合条件的数组.22.(10分)已知函数f(x)=ax-2lnx(1)讨论f(x)的单调性;(2)设函数g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C2、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.3、C【解析】这12天的AQI指数值的中位数是,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;;从4日到9日,空气质量越来越好,,故C正确;这12天的指数值的平均值为110,故D不正确.故选C4、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.5、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.6、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D7、C【解析】分析可知圆的圆心为抛物线的焦点,可求出的最小值,再利用勾股定理可求得的最小值.【详解】设点的坐标为,有,由圆的圆心坐标为,是抛物线的焦点坐标,有,由圆的几何性质可得,又由,可得的最小值为故选:C.8、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.9、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.10、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目11、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A12、D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解.【详解】因为直线与平行,所以,解得或,又因为时,,,所以直线,重合故舍去,而,,,所以两直线平行.所以,故答案为:3.【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论14、【解析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小为.故答案为:15、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值16、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线定义有求参数,即可写出抛物线方程.(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k,即可得直线l方程【小问1详解】由题设,抛物线准线方程为,∴抛物线定义知:可得,故【小问2详解】由题设,直线l的斜率存在且不为0,设联立方程,得,整理得,则.又P是线段AB的中点,∴,即故l18、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程19、(1)答案见解析(2)【解析】(1)求函数的定义域及导函数,根据导数与函数的单调性关系判断函数的单调性;(2)结合已知条件,根据函数的单调性,极值结合零点存在性定理列不等式求实数的取值范围.【小问1详解】的定义域为,当时,恒成立,上单调递增,当时,在递减,在递增【小问2详解】当时,恒成立,上单调递增,所以至多存一个零点,不符题意,故舍去.当时,在递减,在递增;所以有极小值为构造函数,恒成立,所以在单调递减,注意到①当时,,则函数至多只有一个零点,不符题意,舍去.②当时,函数图象连续不间断,的极小值为,又函数在单调递减,所以在上存在唯一一个零点;,令,构造函数,恒成立.在单调递增,所以,即,所以函数在单调递增,所以在上存在唯一一个零点;当时,函数怡有两个零点,即在上各有一个零点.综上,函数有两个不同的零点,实数的取值范围为.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.20、(1)以获胜、以获胜的概率分别是;(2)分给分别元,元.【解析】(1)以获胜、以获胜,则分别要连胜三局,前三局胜两局输一局,第四局胜利;(2)求出若两局之后正常结束比赛时,的胜率,按照胜率分奖金.【小问1详解】设以获胜、以获胜的事件分别为,依题意要想获胜,必须从第一局开始连胜局,;要想获胜,则前局只能胜局,且第局胜利,故概率;【小问2详解】设前两局双方战成后胜,胜的事件分别为.若胜,则可能连胜局,或者局只胜场,第局胜,故概率;由于两人比赛没有和局,获胜的概率为,则获胜的概率为,若胜,则可能连胜局,或者局只胜场,第局胜,故概率.故奖金应分给元,分给元.21、(1)证明见解析,;(2);(3).【解析】(1)由已知等式变形可得,利用等比数列的定义可证得结论成立,确定等比数列的首项和公比,可求得数列的通项公式;(2)求得,然后分、两种情况讨论,结合裂项相消法可得出的表达式;(3)求得,分、、三种情况讨论,利用奇数与偶数的性质以及整数的性质可求得、的值,综合可得出结论.【小问1详解】解:由可得,,则,,以此类推可知,对任意的,,则,故数列为等比数列,且该数列的首项为,公比为,故,可得.【小问2详解】解:由(1)知,所以,所以,当n=1时,,当时,.因为满足,所以.【小问3详解】解:,、、这三项经适当排序后能构成等差数列,①若,则,所以,,又,所以,,则;②若,则,则,左边为偶数,右边为奇数,所以,②不成立;③若,同②可知③也不成立综合①②③得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论