版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省南京六合区程桥高中数学高一上期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵.那么前3个儿子分到的绵的总数是()A.89斤 B.116斤C.189斤 D.246斤2.设集合则().A. B.C. D.3.在空间坐标系中,点关于轴的对称点为()A. B.C. D.4.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.5.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.6.在中,,,若点满足,则()A. B.C. D.7.已知函数,则的值是()A. B.C. D.8.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}9.已知,,且,均为锐角,那么()A. B.或-1C.1 D.10.下列各式中成立的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_________12.若,,,则的最小值为___________.13.若是幂函数且在单调递增,则实数_______.14.已知函数有两个零点分别为a,b,则的取值范围是_____________15.已知,若,则________16.已知函数是定义在上的奇函数,当时,为常数),则=_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,为边上的一点,,且与的夹角为.(1)设,求,的值;(2)求的值.18.已知函数在区间上的最大值为6.(1)求常数m的值;(2)当时,将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数,求函数的单调递减区间、对称中心.19.已知全集,集合,.(1)求;(2)若集合,且,求实数a的取值范围.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.21.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;若函数在上是以3为上界的有界函数,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用等差数列的前项和的公式即可求解.【详解】用表示8个儿子按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,所以,解之得所以,即前3个儿子分到的绵是246斤故选:D2、D【解析】利用求集合交集的方法求解.【详解】因为所以.故选:D.【点睛】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.3、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.4、D【解析】根据相等向量的定义直接判断即可.【详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.5、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.6、C【解析】由题可得,进一步化简可得.【详解】,,.故选:C.7、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D8、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题9、A【解析】首先确定角,接着求,,最后根据展开求值即可.【详解】因为,均为锐角,所以,所以,,所以.故选:A.【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好10、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:12、3【解析】利用基本不等式常值代换即可求解.【详解】因为,,,所以,当且仅当,即时,等号成立,所以的最小值为3,故答案为:313、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.14、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:15、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:116、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由向量的加减运算,可得,进而可得答案.(2)用表示,利用向量数量积公式,即可求得结果.【详解】(1)因,所以..又,又因为、不共线,所以,,(2)结合(1)可得:.,因为,,且与的夹角为.所以.【点睛】本题考查了向量的加减运算、平面向量基本定理、向量的数量积运算等基本数学知识,考查了运算求解能力和转化的数学思想,属于基础题目.18、(1)3(2)单调递减区间为;对称中心.【解析】(1)先对化简,根据最大值求m;(2)利用整体代入法求单调递减区间和对称中心.【小问1详解】,由,所以在区间上的最大值为2+m+1=6,解得m=3.【小问2详解】由(1)知,.将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到.要求函数的单调递减区间,只需,解得.所以的单调递减区间为要求函数的对称中心,只需,解得.所以的对称中心为.19、(1)(2)【解析】(1)先求出集合,再按照并集和补集计算即可;(2)先求出,再由求出a取值范围即可.【小问1详解】,,;【小问2详解】,由题得故.20、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根据定义判断出函数的单调性,再结合所给的定义域求出最值(或值域)21、(1)值域为(3,+∞);不是有界函数,详见解析(2)【解析】(1)当a=1时,f(x)=1+因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),故不存在常数M>0,使|f(x)|≤M成立,所以函数f(x)在(-∞,0)上不是有界函数.(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网企业公关危机处理指南
- 高一政治《权力的制约与监督》教学设计
- 2025至2030中国康复医疗器械市场现状及投资机会评估研究报告
- 2025至2030中国游戏产业行业市场发展分析及前景预判与投资研究报告
- 2026南京银行秋招题库及答案
- 2025-2030重点产业园区发展规划及技术路线研究报告
- 2025至2030跨境电商行业市场发展分析及前景趋势与投资发展机会研究报告
- 2026精算师招聘真题及答案
- 2026华润集团校招面试题及答案
- 2025年智能手环健康数据穿戴监测五年报告
- 单位消防安全教育培训记录表
- 江苏省工程质量安全手册实施细则房屋建筑工程篇(2022年版)上册:质量分册
- 顶板离层仪管理规定
- GA/T 1499-2018卷帘门安全性要求
- GA/T 1359-2018信息安全技术信息资产安全管理产品安全技术要求
- 长输管道施工技术(完整版)
- 2022-2023学年新教材高中化学研究与实践1了解纯碱的生产历史课件新人教版必修第一册
- 车辆四轮定位培训课件
- 京杭运河船闸扩容工程邵伯三线船闸工程总体施工组织设计--水工
- 2022年医院出院证明书(模版)
- 糖尿病足评估量表
评论
0/150
提交评论