黑龙江哈尔滨市第十九中学2026届数学高二上期末质量检测模拟试题含解析_第1页
黑龙江哈尔滨市第十九中学2026届数学高二上期末质量检测模拟试题含解析_第2页
黑龙江哈尔滨市第十九中学2026届数学高二上期末质量检测模拟试题含解析_第3页
黑龙江哈尔滨市第十九中学2026届数学高二上期末质量检测模拟试题含解析_第4页
黑龙江哈尔滨市第十九中学2026届数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江哈尔滨市第十九中学2026届数学高二上期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列前项和,已知,,则的值是().A. B.C. D.2.概率论起源于赌博问题.法国著名数学家布莱尔帕斯卡遇到两个赌徒向他提出的赌金分配问题:甲、乙两赌徒约定先赢满局者,可获得全部赌金法郎,当甲赢了局,乙赢了局,不再赌下去时,赌金如何分配?假设每局两人输赢的概率各占一半,每局输赢相互独立,那么赌金分配比较合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎3.已知向量是两两垂直的单位向量,且,则()A.5 B.1C.-1 D.74.已知直线,若圆C的圆心在轴上,且圆C与直线都相切,求圆C的半径()A. B.C.或 D.5.已知等差数列满足,,则()A. B.C. D.6.已知函数,其导函数的图象如图所示,则()A.在上为减函数 B.在处取极小值C.在上为减函数 D.在处取极大值7.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.8.已知数列是等比数列,,是函数的两个不同零点,则等于()A. B.C.14 D.169.某高校甲、乙两位同学大学四年选修课程的考试成绩等级(选修课的成绩等级分为1,2,3,4,5,共五个等级)的条形图如图所示,则甲成绩等级的中位数与乙成绩等级的众数分别是()A.3,5 B.3,3C.3.5,5 D.3.5,410.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.11.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.12.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与垂直,则m的值为______14.已知函数,则f(e)=__.15.若p:存在,使是真命题,则实数a的取值范围是______16.甲、乙两人独立地破译一份密码,已知各人能破译的概率分别为,则密码被成功破译的概率_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围18.(12分)已知双曲线的两个焦点为的曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程19.(12分)已知椭圆:的左、右焦点分别为,,离心率为,且过点.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于,两点(A、B非椭圆顶点),求的最大值.20.(12分)如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.21.(12分)已知圆经过点和,且圆心在直线上(1)求圆的标准方程;(2)直线过点,且与圆相切,求直线的方程;(3)设直线与圆相交于两点,点为圆上的一动点,求的面积的最大值22.(10分)已知某中学高二物化生组合学生的数学与物理的水平测试成绩抽样统计如下表:若抽取了名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设,分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有(人),数学成绩为B等级且物理成绩为C等级的共有8人,已知与均为A等级的概率是0.07(1)设在该样本中,数学成绩的优秀率是30%,求,的值;(2)已知,,求数学成绩为A等级的人数比C等级的人数多的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意,设等差数列的公差为,则,故,故,故选2、A【解析】利用独立事件计算出甲、乙各自赢得赌金的概率,由此可求得两人各分配的金额.【详解】甲赢得法郎的概率为,乙赢得法郎的概率为,因此,这法郎中分配给甲法郎,分配给乙法郎.故选:A.3、B【解析】根据单位向量的定义和向量的乘法运算计算即可.【详解】因为向量是两两垂直的单位向量,且所以.故选:B4、C【解析】设出圆心坐标,利用圆心到直线的距离相等列方程,求得圆心坐标并求得圆的半径.【详解】设圆心坐标为,则或,所以圆的半径为或.故选:C5、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.6、C【解析】首先利用导函数的图像求和的解,进而得到函数的单调区间和极值点.【详解】由导函数的图象可知:当时,或;当时,或,所以的单调递增区间为和,单调递减区间为和,故在处取得极大值,在处取得极小值,在处取得极大值.故选:C.7、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B8、C【解析】根据等比数列的性质求得正确答案.【详解】是函数的两个不同零点,所以,由于数列是等比数列,所以.故选:C9、C【解析】将甲的所有选修课等级从低到高排列可得甲的中位数,由图可知乙的选修课等级的众数.【详解】由条形图可得,甲同学共有10门选修课,将这10门选修课的成绩等级从低到高排序后,第5,6门的成绩等级分别为3,4,故中位数为,乙成绩等级的众数为5.故选:C.10、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.11、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D12、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.二、填空题:本题共4小题,每小题5分,共20分。13、0或-9##-9或0【解析】根据给定条件利用两直线互相垂直的性质列式计算即得.【详解】因直线与垂直,则有,解得或,所以m的值为0或-9.故答案为:0或-914、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.15、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:16、【解析】根据题意,由相互独立事件概率的乘法公式可得密码没有被破译的概率,进而由对立事件的概率性质分析可得答案【详解】解:根据题意,甲乙两人能成功破译的概率分别是,,则密码没有被破译,即甲乙都没有成功破译密码概率,故该密码被成功破译的概率故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是18、(1)双曲线方程为(2)满足条件的直线l有两条,其方程分别为y=和【解析】(1)由双曲线焦点可得值,进而可得到的关系式,将点P代入双曲线可得到的关系式,解方程组可求得值,从而确定双曲线方程;(2)求直线方程采用待定系数法,首先设出方程的点斜式,与双曲线联立,求得相交的弦长和O到直线的距离,代入面积公式可得到直线的斜率,求得直线方程试题解析:(1)由已知及点在双曲线上得解得;所以,双曲线的方程为(2)由题意直线的斜率存在,故设直线的方程为由得设直线与双曲线交于、,则、是上方程的两不等实根,且即且①这时,又即所以即又适合①式所以,直线的方程为与19、(1)(2)【解析】(1)根据离心率和点在椭圆上建立方程,结合,然后解出方程即可(2)设直线的斜率为,联立直线与椭圆的方程,然后利用韦达定理表示出,两点的坐标关系,并表示出为直线斜率的函数,然后求出的最大值【小问1详解】由椭圆过点,则有:由可得:解得:则椭圆的方程为:【小问2详解】由(1)得,,已知直线不过椭圆长轴顶点则直线的斜率不为,设直线的方程为:设,,联立直线方程和椭圆方程整理可得:故是恒成立的根据韦达定理可得:,则有:由,可得:所以的最大值为:20、(1)证明见解析;(2).【解析】(1)利用面面垂直和线面垂直的性质定理可证得;由菱形边长和角度的关系可证得;利用线面垂直的判定定理可证得结论;(2)以为坐标原点建立起空间直角坐标系,利用空间向量法可求得二面角的余弦值.详解】(1)平面平面,平面平面,且平面,平面,平面,,四边形为菱形且为中点,,又,,又,,平面,,平面.(2)以为坐标原点可建立如下图所示的空间直角坐标系,设,则,,,,,,则,,,设平面的法向量,则,令,则,,,设平面的法向量,则,令,则,,,,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面垂直关系的证明、空间向量法求解二面角的问题;涉及到面面垂直的性质定理、线面垂直的判定与性质定理的应用,属于常考题型.21、(1)(2)或(3)【解析】(1)解法一,根据题意设圆的标准方程为,进而待定系数法求解即可;解法二:由题知圆心在线段的垂直平分线上,进而结合题意得圆的圆心与半径,写出方程;(2)分直线的斜率存在与不存在两种情况讨论求解即可;(3)由几何法求弦长得,进而到直线距离的最大值为,再计算面积即可.【小问1详解】解:解法一:设圆的标准方程为,由已知得,解得,所以圆的标准方程为;解法二:由圆经过点和,可知圆心在线段的垂直平分线上,将代入,得,即,半径,所以圆的标准方程为;【小问2详解】解:当直线的斜率存在时,设,即,由直线与圆相切,得,解得,此时,当直线的斜率不存在时,直线显然与圆相切所以直线的方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论