重庆市第一中学2026届高一数学第一学期期末考试试题含解析_第1页
重庆市第一中学2026届高一数学第一学期期末考试试题含解析_第2页
重庆市第一中学2026届高一数学第一学期期末考试试题含解析_第3页
重庆市第一中学2026届高一数学第一学期期末考试试题含解析_第4页
重庆市第一中学2026届高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第一中学2026届高一数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若,则的值为A. B.C.-1 D.12.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知向量,若与垂直,则的值等于A. B.C.6 D.24.若函数恰有个零点,则的取值范围是()A. B.C. D.5.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.96.()A.1 B.C. D.7.过点(5,2),且在y轴上的截距是在x轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.x-2y-1=0或2x-5y=0C.x-2y-1=0 D.2x+y-12=0或2x-5y=08.在正方体中,分别是的中点,则直线与平面所成角的余弦值为A. B.C. D.9.函数定义域为()A. B.C. D.10.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.12.已知圆,圆,则两圆公切线的方程为__________13.已知函数,若关于的不等式在[0,1]上有解,则实数的取值范围为______14.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)15.____16.若,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数.(1)求实数a的值;(2)求的值.18.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值19.设函数.求函数的单调区间,对称轴及对称中心.20.如图,在底面是正方形的四棱锥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;(3)当二面角的大小为时,求PC与底面ABCD所成角的正切值.21.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,选D点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.3、B【解析】,所以,则,故选B4、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D5、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6、A【解析】直接利用诱导公式和两角和的正弦公式求出结果【详解】,故选:7、D【解析】根据直线是否过原点进行分类讨论,结合截距式求得直线方程.【详解】当直线过原点时,直线方程为,即.当直线不过原点时,设直线方程为,代入得,所以直线方程为.故选:D8、C【解析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.9、C【解析】由二次根式的被开方数非负和对数的真数大于零求解即可【详解】由题意得,解得,所以函数的定义域为,故选:C10、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.12、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.13、【解析】不等式在[0,1]上有解等价于,令,则.【详解】由在[0,1]上有解,可得,即令,则,因为,所以,则当,即时,,即,故实数的取值范围是故答案为【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.14、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.15、-1【解析】根据和差公式得到,代入化简得到答案.【详解】故答案为:【点睛】本题考查了和差公式,意在考查学生的计算能力.16、【解析】利用指数的运算性质可求得结果.【详解】由指数的运算性质可得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题18、(1);(2).【解析】(1)由二次函数可设,再利用进行化简分析即可.(2)由(1)可知,对称轴为,通过讨论的范围,根据函数的单调性,求出函数的最小值.【详解】(1)由二次函数可设,因为,故,即,即,故,即,故;(2)函数的对称轴为,则当,即时,在单调递减,;当,即时,;当时,在单调递增,,.【点睛】本题主要考查二次函数的解析式求解以及二次函数最值的问题等,属于中等题型.19、函数增区间为;减区间为;对称轴为;对称中心为【解析】根据的单调区间、对称轴及对称中心即可得出所求的.【详解】函数增区间为同理函数减区间为令其对称轴为令其对称中心为【点睛】本题主要考查的是正弦函数的图像和性质,考查学生对正弦函数图像和性质的理解和应用,同时考查学生的计算能力,是中档题.20、(1)见解析(2)GEC中点(3)【解析】试题分析:(1)要证:BD⊥FG,先证BD⊥平面PAC即可;(2)确定点G在线段AC上的位置,使FG∥平面PBD,FG∥平面PBD内的一条直线即可;(3)利用向量数量积求解法向量,然后转化求出PC与底面ABCD所成角的正切值解析:(1)(2)当GEC中点,即时,FG//平面PBD理由如下:连接PE,F为PC中点,G为EC中点,FG//PEFG//平面PBD(3)作作于H,连接DH,,四边形ABCD是正方形,又是二面角的平面角,即是PC与底面ABCD所成角连接EH,则又,PC与与底面ABCD所成角的正切值是.点睛:这个题目考查了空间中的直线和平面的位置关系.证明线线垂直,可以从线面垂直入手,也可以平移到同一平面中利用平面几何知识证明;求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论