浙江省金华十校2026届高一数学第一学期期末经典模拟试题含解析_第1页
浙江省金华十校2026届高一数学第一学期期末经典模拟试题含解析_第2页
浙江省金华十校2026届高一数学第一学期期末经典模拟试题含解析_第3页
浙江省金华十校2026届高一数学第一学期期末经典模拟试题含解析_第4页
浙江省金华十校2026届高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华十校2026届高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,若存在,使得,则实数的取值范围是()A. B.C. D.2.设函数,则下列结论错误的是A.函数的值域为 B.函数是奇函数C.是偶函数 D.在定义域上是单调函数3.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为6.已知角的终边上一点,且,则()A. B.C. D.7.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a8.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.9.若方程的两实根中一个小于,另一个大于,则的取值范围是()A. B.C. D.10.已知函数,若不等式对任意的均成立,则的取值不可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则_____;_____12.两平行直线与之间的距离______.13.若“”是“”的必要条件,则的取值范围是________14.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________15.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.16.已知函数,则函数的所有零点之和为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?18.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.19.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.20.已知函数.(1)求函数振幅、最小正周期、初相;(2)用“五点法”画出函数在上的图象21.人类已进入大数据时代.目前数据量已经从级别越升到,,乃至级别.某数据公司根据以往数据,整理得到如下表格:时间2008年2009年2010年2011年2012年间隔年份(单位:年)01234全球数据量(单位:)0.50.751.1251.68752.53125根据上述数据信息,经分析后发现函数模型能较好地描述2008年全球产生的数据量(单位:)与间隔年份(单位:年)的关系.(1)求函数的解析式;(2)请估计2021年全球产生的数据量是2011年的多少倍(结果保留3位小数)?参考数据:,,,,,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可【详解】当时,,即,则的值域为[0,1],当时,,则的值域为,因为存在,使得,则若,则或,得或,则当时,,即实数a的取值范围是,A,B,C错,D对.故选:D2、D【解析】根据分段函数的解析式研究函数的单调性,奇偶性,值域,可得结果.【详解】当时,为增函数,所以,当时,为增函数,所以,所以的值域为,所以选项是正确的;又,,所以在定义域上不是单调函数,故选项是错误的;因为当时,,所以,当时,,所以,所以在定义域内恒成立,所以为奇函数,故选项是正确的;因为恒成立,所以函数为偶函数,故选项是正确的.故选:D【点睛】本题考查了分段函数的单调性性,奇偶性和值域,属于基础题.3、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.4、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数5、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件6、B【解析】由三角函数的定义可列方程解出,需注意的范围【详解】由三角函数定义,解得,由,知,则.故选:B.7、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.8、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等9、A【解析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】由可得,令,由已知可得,解得,故选:A.10、D【解析】根据奇偶性定义和单调性的性质可得到的奇偶性和单调性,由此将恒成立的不等式化为,通过求解的最大值,可知,由此得到结果.【详解】,是定义在上的奇函数,又,为增函数,为减函数,为增函数.由得:,,整理得:,,,,的取值不可能是.故选:D.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【详解】因为,则,故.故答案为:;212、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.13、【解析】根据题意解得:,得出,由此可得出实数的取值范围.【详解】根据题意解得:,由于“”是“”必要条件,则,.因此,实数的取值范围是:.故答案为:.14、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.15、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.16、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(2)根据扇形的面积公式,结合基本不等式即可得到结论【详解】(1)设弧长为l,弓形面积为S弓,则α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.当且仅当α2=4,即α=2时,扇形面积有最大值.【点睛】本题主要考查扇形的弧长和扇形面积的计算,要求熟练掌握相应的公式,考查学生的计算能力18、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即,所以是奇函数.【小问3详解】解:由(1)知,函数在上单调递增,又因为x是增函数,所以是上的增函数,由,可得,由,可得,因为奇函数,所以,所以原不等式可化为,则,解得,所以原不等式的解集为19、(1);(2),k∈Z.【解析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.20、(1)振幅为,最小正周期为,初相为;(2)答案见解析.【解析】(1)首先利用三角恒等变换把三角函数的关系式变形为正弦型函数,利用关系式即求;(2)利用整体思想,使用“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论