版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Foreword
AccordingtotherequirementsofDocumentJIANBIAO[2012]No.5issuedbytheMinistryofHousingandUrban-RuralDevelopment(MOHURD)ofthePeople'sRepublicofChina—"NoticeonPrintingandDistributing'theDevelopmentandRevisionPlanofNationalEngineeringConstructionStandardsin2012'",andafterextensiveinvestigationandresearch,summarizationofpracticalexperience,andwidesolicitationofopinions,thedraftinggrouphaspreparedthisstandard.
Thisstandardcomprises14chaptersand2appendixeswiththemaintechnicalcontentsonseismicdesignofhydraulicstructuresofhydropowerplant,covering:generalprovisions;termsandsymbols;basicrequirements;site,foundationandslope;seismicactionandseismiccalculation;embankmentdam;gravitydam;archdam;sluice;undergroundhydrauliestructures;intaketower;penstockandsurfacepowerhouseofhydropowerstation;aqueduct;shiplift,etc.
Theprovisionsprintedinboldtypearemandatoryonesandmustbeimplementedstrictly.
TheMinistryofHousingandUrban-RuralDevelopmentofthePeople'sRepublicofChinaisinchargeofadministrationofthisstandardandexplanationofitsmandatoryprovisions,theMinistryofWaterResourcesofthePeople'sRepublicofChinaisresponsibleforitsroutinemanagement,ChinaInstituteofWaterResourcesandHydropowerResearchisinchargeofexplanationofspecifictechnicalcontents.Duringimplementationofthisstandard,anycommentsandadvicescanbepostedorpassedontoChinaInstituteofWaterResourcesandHydropowerResearch(Address:No.20,ChegongzhuangWestRoad,HaidianDistrict,Beijing,Postcode:100048)
ChiefDevelopmentOrganization,Co-DevelopmentOrganization,ChiefDraftersandChiefReviewersofthisstandard:
ChiefDevelopmentOrganization:
ChinaInstituteofWaterResourcesandHydropowerResearch
Co-DevelopmentOrganization:
ChinaWaterConservancyandHydropowerInvestigationandDesignAssociation
ChiefDrafters:
CHENHouqunLIDeyuHUXiaoGUANZhichengYANGZeyan
LIUXiaoshengWANGHaiboZHAOJianmingSHAOJiannanDUXiaokaiZHANGYanhongZHANGBoyanWANGZhongningTUJinLIMin
ZHANGCuiranOUYANGJinhuiMAHuaifa
ChiefReviewers:
GAOAnzeLIUZhimingZHOUJianpingDANGLincaiZHANGChuhanLINGaoZHOUJianYUYanxiangWANGYayongJIANGGuocheng
LIXiansheSIFu'an
·1·
Contents
1Generalprovisions (1)
2Termsandsymbols (2)
2.1Terms (2)
2.2Symbols (4)
3Basicrequirements (6)
4Site,foundationandslope (8)
4.1Site (8)
4.2Foundation (9)
4.3Slope (10)
5Seismicactionandseismiccalculation (12)
5.1Seismicgroundmotioncomponentsandcombinion (12)
5.2Classificationofseismicactions (12)
5.3Designresponsespectrum (13)
5.4Combinationofseismicactionwithotheractions (14)
5.5Structuralmodelingandcalculationmethod (14)
5.6Dynamicpropertiesofconcreteandfoundationrockforhydraulicstructures (15)
5.7Seismiedesignforutimanlinitstateswitparialfatrs (16)
5.8Seismiccalculationforappartenantstructures (17)
5.9Seismicearnhprcsue (17)
6Embankmentdam (19)
6.1Seismiecalculation (19)
6.2sesmicmeasures (21)
7Gravitydam (23)
7.1Seismiccalculation (23)
7.2Seismicmeasures (25)
8Archdam (27)
8.1Seismiccalculation (27)
8.2Seismicmeasures (29)
9Sluice (30)
9.1Seismiccalculation (30)
9.2Seismicmeasures (31)
10Undergroundhydraulicstructures (33)
10.1Seismiccalculation (33)
10.2Seismicmeasures (34)
11Intaketower (35)
11.1Seismiccalculation (35)
11.2Seismicmeasures (38)
·2·
12Penstockandsurfacepowerhouseofhydropowerstation (40)
12.1Penstock (40)
12.2Surfacepowerhouse (40)
13Aqueduct (42)
13.1Seismiccalculation (42)
13.2Seismicmeasures (42)
14Shiplift (44)
14.1Seismiecalculation (4)
14.2Seismicmeasures (44)
AppendixASeismicstabilitycalculationofembankmentdamsbypseudo-staticmethod (46)
AppendixBCalculationofhydrodynamicpressureinaqueduct (48)
Explanationofwordinginthisstandard (51)
Listofquotedstandards (52)
·1·
1Generalprovisions
1.0.1ThisstandardisformulatedinaccordancewiththeLawofthePeople'sRepublicofChinaonProtectingAgainstandMitigatingEarthquakeDisasters,andwithaviewtocarryingoutthepolicyofpreventionfirst,tomitigateearthquakedamageandpreventsecondarydisastersthroughseismicdesignofhydraulicstructures.
1.0.2Thehydraulicstructuredesignedasperthisstandardshallbeabletoresisttheseismicactionofthedesignintensity,andremainfunctionalafterrepairoflocaldamages,ifany.
1.0.3ThisstandardismainlyapplicabletoseismicdesignofGrade1,Grade2andGrade3hydraulicstructureswithdesignintensityofV,Ⅱ,VandIX,suchastheroller-compactedembankmentdam,concretegravitydam,concretearchdam,sluice,undergroundhydraulicstructures,intaketower,penstockandsurfacepowerhouseofhydropowerstation,aqueduct,shiplift,etc.
ForhydraulicstructureswithdesignintensityofVI,seismiccalculationmaynotberequired,butseismicmeasuresshallstillbetakeninaccordancewiththisstandard.
ForhydraulicstructureswithdesignintensityaboveIX,andwater-retainingstructureshigherthan200morwithunfavorableconditions,specialstudyanddemonstrationshallbecarriedoutontheirseismicsafety.
1.0.4Forgeneralprojects,thedesignpeakgroundacceleration(PGA)ontheprojectsiteandcorrespondingdesignintensityshallbedeterminedinaccordancewiththecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina.
1.0.5Forlarge-scale(Rank1)projectswithadamheightover200morreservoirstoragecapacityover10billionm³intheregionswithabasicintensityofVorabove,andlarge-scale(Rank1)projectswithadamheightover150mintheregionswithabasicintensityofVIorabove,thedesignpeakgroundaccelerationontheprojectsiteandcorrespondingdesignintensityshallbedeterminedbasedonsite-specificseismicsafetyevaluation.
1.0.6ForGrade1andGrade2damswithaheightover90m,mainstructuresofRank1pumpedstoragepowerstationsandimportantstructuresofwaterdiversionprojectsintheregionswithabasicintensityofVⅡorabove,thedesignpeakgroundaccelerationontheprojectsiteandcorrespondingdesignintensitymaybedeterminedbasedonsite-specificseismicsafetyevaluationaftertechno-economicdemonstration.
1.0.7Inadditiontothisstandard,theseismicdesignofhydraulicstructuresshallcomplywithotherrcurrentrelevantstandardsofthenation.
·2·
2Termsandsymbols
2.1Terms
2.1.1seismicdesign
Specialdesignofengineeringstructuresinearthquakeregions,generally/includingseismiccalculationandseismicmeasures.
2.1.2basicintensity
Seismicintensityofgeneralsitewitha10%probabilityofexceedancein50years,whichisusuallydeterminedaccordingtothepeakgroundaccelerationspecifiedinthecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina,andcorrespondingtotheseismicintensityspecifiedintheAppendix.Formajorprojects,itshallbedeterminedthroughsite-specificseismicsafetyevaluation.
2.1.3designintensity
Seismicintensityforengineeringfortificationdeterminedonthebasisofbasicintensity.
2.1.4reservoirearthquake
Earthquakerelatedtoreservoirimpounding,whicheveroccurswithinascopeoflessthan10kmawayfromthereservoirrims.
2.1.5maximumcredibleearthquake(MCE)
Earthquakewithpotentialmaximumgroundmotionassessedbasedontheregionalgeologicalandseismologicalconditionsaroundprojectsite.
2.1.6scenarioearthquake
Earthquakehavingaparticularmagnitudeandepicentraldistance,withthemaximumprobabilityofexceedanceofdesignpeakgroundaccelerationlinasourcethatmakesthemaximumcontributiontodesignpeakgroundaccelerationonaprojectsiteamongpotentialseismicsources,basedontheresultofsite-specificseismicsafetyevaluation.
2.1.7seismicgroundmotion
Groundmotioninducedbyearthquake.
2.1.8seismicaction
Dynamicactionsofseismicgroundmotiononstructures.
2.1.9hangingwalleffect
Phenomenonthatseismicgroundmotionofhangingwallabovetheinclinedseismogenicfaultislargerthanthatoffootwall.
2.1.10peakgroundacceleration(PGA)
Maximumabsolutevalueofgroundmasspointmotionaccelerationduringearthquake.
2.1.11designearthquake
Seismicgroundmotionforseismicfortificationcorrespondingtodesignintensity,whoseparametersincludepeakgroundacceleration,responsespectrum,duration,andaccelerationtimehistory.
2.1.12designpeakgroundacceleration
Peakgroundaccelerationoffortificationprobabilitylevelspecifiedbysite-specificseismicsafety
·3·
evaluationonprojectsite,orgenerallycorrespondingtothedesignintensity.
2.1.13seismiceffect
Dynamiceffectsuchasstructureinternalforce,deformation,slidingandcrackingcausedbyseismicaction.
2.1.14seismicliquefaction
Processinwhich,inducedbytheseismicgroundmotion,theparticlesofsaturatedcohesionlesssoilorlesscohesivesoilgrowdenser,soilporewaterpressureincreases,andtheeffectivestressofthesoilapproacheszero.
2.1.15designresponsespectrum
Curvethatplotsthemaximumgroundaccelerationasafunctionofthenaturalvibrationperiodofsingle-degree-of-freedom(SDOF)systemconsideringagivendampingratio,whichmaybeexpressedbytheratioofthemaximumaccelerationresponsetothepeakgroundacceleration.
2.1.16dynamicmethod
Methodtoanalyzeseismiceffectofstructurebasedonthetheoryofstructuraldynamics.
2.1.17timehistoryanalysismethod
Methodtoanalyzeseismiceffectinwholetimehistorybyintegratingthegoverningmotionequationofstructurewithaccelerogramasseismicinput.
2.1.18modedecompositionmethod
Methodtoanalyzeseismiceffeetofstructure,inwhichthetotalseismiceffectofthestructureisobtainedbysuperpositionofseismiceffectofeachmode.Itiscalledthemodedecompositiontimehistoryanalysismethod,whenthetimehistoryanalysisisusedtoobtaintheseismiceffectofeachmode.Itiscalledthemodedecompositionresponsespectrummethod,whentheresponsespectrumisusedtoobtaintheseismiceffectofeachmode.
2.1.19squarerootofthesumofsquares(SRSS)method
Methodtoevaluatethemaximumresponseofstructurebythesquarerootofthesumofthesquaresofvariousmodeseismiceffects.
2.1.20completequadraticcombination(CQC)method
Methodtoevaluatethemaximumresponseofstructurebythesquarerootofthesumofquadratictermsofvariousmodeseismiceffectsandcouplingterms.
2.1.21seismichydrodynamicpressure
Dynamicpressureofwateronstructurecausedbyearthquake.
2.1.22seismicearthpressure
Dynamicpressureofsoilmassonstructurecausedbyearthquake.
2.1.23pseudo-staticmethod
Staticanalysismethodtakingtheproductofgravityaction,ratioofdesignseismicpeakaccelerationtogravityacceleration,specifiedseismiceffectreductionfactoranddynamicdistributioncoefficientasthedesignseismicaction.
2.1.24seismiceffectreductionfactor
Reductionfactorforseismiceffectsintroducedduetosimplificationinanalysismethod.
2.1.25naturalvibrationperiod
Timeintervalforstructuretocompleteafreevibrationcycleinacertainvibrationmode.Thenaturalvibrationperiodcorrespondingtothefirstvibrationmodeiscalledthefundamentalperiod.
·4·
2.1.26seismicmeasures
Seismicdesignexceptthecalculationofseismicactionandresistance,includingdetailsofseismicdesign.
2.1.27detailsofseismicdesign
Variousdetailedmeasuresthatmustbetakenforstructuralandnon-structuralmemberswithoutjustificationbyseismiccalculation,accordingtobasicrequirementsofseismicdesign.
2.2Symbols
2.2.1Actionsandeffects:
ah—representativevalueofhorizontaldesignpeakgroundacceleration;
a、—representativevalueofverticaldesignpeakgroundacceleration;
E—representativevalueofhorizontalseismicinertialforceactingonmasspointi;
Fe—representativevalueofseismicactiveearthpressure;
F₀—representativevalueoftotalseismichydrodynamicpressureonwater-contactfaceperunitwidthofstructure;
g—gravityacceleration,whichistakenas9.81m/s²;
Gg—characteristicvalueofstructuretotalgravityactionthatproducesseismicinertialforce;Pw(h)—representativevalueofseismichydrodynamicpressureatwaterdepthh;
a—dynamicdistributioncoefficientofseismicinertialforceofmasspointi;
β—designresponsespectrum;
ξ—seismiceffectreductionfactor.
2.2.2Materialpropertiesandgeometricparameters:
ak—characteristicvalueofgeometricparameter;
f—characteristicvalueofmaterialproperty;
K—characteristicvaluesoflongitudinalstiffnesscoefficientofunitlengthoftunnelsurroundingmass;
K—characteristicvaluesoftransversestiffnesscoefficientofunitlengthoftunnelsurroundingmass;
N—blowcountofstandardpenetrationtest;
N.—criticalblowcount;
v,—characteristicvalueofcompressionwavevelocity;
v₅—characteristicvalueofshearwavevelocity;
Pw—characteristicvalueofwatermassdensity.
2.2.3Limitstatedesignusingpartialfactor:
E—representativevalueofseismicaction;
Gk—characteristicvalueofpermanentaction;
Qk—characteristicvalueofvariableaction;
R—resistanceofstructure;
S—actioneffectofstructure;
γo—importancefactorofstructure;
ya—structuralfactor,safetymarginintroducedfornon-randomuncertaintyontheultimatelimitstateofbearingcapacity;
·5·
YE—partialfactorforseismicaction;
YG—partialfactorforpermanentaction;
Ym—partialfactorformaterialproperty;
YQ—partialfactorforvariableaction;
ψ—designsituationfactor.
2.2.4Others:
T₈—characteristicperiod;
T—naturalvibrationperiodofstructure;
λm—massratioofappurtenantstructuretomainstructure;
λ—fundamentalfrequencyratioofappurtenantstructuretomainstructure.
·6·
3Basicrequirements
3.0.1TheseismicfortificationclassofhydraulicstructuresshallbedeterminedbasedontheirimportanceandbasicseismicintensityontheirsitesaccordingtoTable3.0.1.
Table3.0.1Classificationofseismicfortification
Seismicfortificationclass
Gradeofstructure
Sitebasicintensity
A
Water-retainingandimportantwater-releasingstructuresofGrade1
≥V
B
Non-water-retainingstructureofGrade1andwater-retainingstructureofGrade2
C
Non-water-retainingstructureofGrade2andstructureofGrade3
≥MⅡ
D
StructureofGrade4andGrade5
Note:Importantwater-releasingstructuresrefertothosewhosefailuremightendangerthesafetyofwater-retainingstructures.
3.0.2Theseismicfortificationclassofhydraulicstructuresshallberepresentedintermsofdesignintensityandhorizontaldesignpeakgroundaccelerationonflatgroundsurfaceaftersiteclassadjustment,andshallcomplywithArticle3.0.3toArticle3.0.8inthisstandard.
3.0.3Forhydraulicstructures_whoseseismicfortificationclassesaredeterminedinaccordancewiththecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina,inthecaseofgeneralprojects,thevalueofthepeakgroundaccelerationontheirsitesshallbetakenfromzonationmapastherepresentativevalueofthehorizontaldesignpeakgroundacceleration,andthecorrespondingbasicintensityistakenasthedesignintensity.InthecaseofhydraulicstructuresassignedtoseismicfortificationClassA,theirdesignintensityshallbeonelevelhigherthanthebasicintensity,andthe_representativevalueofthehorizontaldesignpeakgroundaccelerationshallbedoubledaccordingly.
3.0.4Forprojectswhoseseismicfortificationcriteriaarebasedonsite-specificseismicsafetyevaluation,theprobabilityofexceedanceoftherepresentativevaluesofhorizontaldesignpeakgroundacceleration,P¹00,ontheflatrockfoundationsurfaceshallbe0.02in100yearsforwater-retainingstructuresandimportantwater-releasingstructuresassignedtoseismicfortificationClassA.Anprobabilityofexceedancein50years,P⁵o,shallbe0.05forGrade1non-water-retainingstructures.Anprobabilityofexceedancein50years,Pso,shallbe0.10forhydraulicstructuresassignedtootherseismicfortificationclassesthanClassA,andthecorrespondingpeakground
accelerationshallnotbelowerthanthatspecifiedinthecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina.
3.0.5ForhydraulicstructuresassignedtoseismicfortificationClassAwhosedesignseismicparametersshallbeprovidedbythesite-specificseismicsafetyevaluation,aspecialdemonstrationonsafetymarginunderthemaximumcredibleearthquake(MCE)shallbecarriedoutondisasterpreventionoftheuncontrolledreleaseofreservoirinadditiontotheseismicdesignunderdesignpeakgroundacceleration.Aspecialreportonseismicsafetyshallbeprepared.TheMCEofthesiteshallbedeterminedbythedeterministicmethodortheprobabilisticmethodwithanprobabilityofexceedanceof0.01in100years.
·7·
3.0.6Inthespecialreportonseismicsafety,relevantsite-specificdesignresponsespectrumshouldbedeterminedbasedonscenarioearthquakecorrespondingtohorizontaldesignpeakgroundacceleration,andartificialaccelerogramsaregenerated.Foranalyzingtheseismiceffectonstructureswithstrongnon-linearity,theinfluencearisingfromnon-stationaryfrequencyofgroundmotionshouldbestudiedwhenconditionspermit.Whenthedistancefromtheseismogenicfaulttothesiteislessthan30kmanditsinclinationangleissmallerthan70°,hangingwalleffectshouldbeconsidered.Whenthedistanceislessthan10kmandthemagnitudeisover7.0,theruptureprocessofseismogenicfaultastheareasourceofthenear-fieldstrongearthquakegroundmotionsshouldbestudiedtogeneratedirectlytherandomtimehistoriesofgroundmotions,andthentoselectthetimehistorieswiththepeakperiodofevolutionaryspectrumclosesttothefundamentalperiodofstructure.
3.0.7Whenthegradeofwater-retainingstructureisraisedduetothedamheight,specialstudyontheseismicfortificationstandardshallbeperformedandreportedtocompetentauthoritiesforapproval.
3.0.8Seismicactionsmaynotbeinvolvedinthecaseofrelativelyshortperiodofconstruction.
3.0.9Fornewreservoirswiththedamhigherthan100mandstoragecapacitylargerthan
500millionm³,anevaluationofreservoirearthquakeshallbeconducted.Inthecaseofpotentialreservoirearthquakeofmagnitudehigherthan5.0orepicentralintensityhigherthanVⅡ,areservoirearthquakemonitoringnetworkshallbeestablishedandputintooperationatleastoneyearpriortotheinitialimpoundment.
3.0.10Theseismicdesignforhydraulicstructuresshallincludeseismiccalculationandseismicmeasures,andshallbecompliancewiththefollowingrequirements:
1Selecttheregion,siteandstructuretypefavorableforseismicresistanceaccordingtotheseismicrequirements.
2Preventstabilityfailureoffoundationandslopesadjacenttothestructures.
3Selectsafeandcost-effectivestructuresandmeasuresforearthquakeresistance.
4Proposetheconstructionqualitycontrolmeasuresmeetingtheseismicsafetyrequirementsindesigndocuments.
5Arrangewater-releasingfacilitiesthatcanlowerthereservoirlevelasquicklyaspossible.
6Conductseismicdesignsfornon-structuralelements,appurtenantelectromechanicalequipmentandtheirconnectionswithmainstructuresinhydraulicstructures,suchassluice,intaketowerandshiplift.
3.0.11Therequirementsforemergencyplantopreventandmitigateearthquakehazardshallbeeproposedinthedesigndocumentforhydraulicstructureswithseismicrequirements.
3.0.12DynamicmodeltestshouldbeconductedfordamsassignedtoseismicfortificationClassAwiththedesignintensityofVⅢandabove,andaheightofmorethan150m.
3.0.13Theseismicmonitoringarraydesignforstrong-motionobservationshallmeettherequirementsofthecurrentprofessionalstandardSL486TechnicalSpecificationofStrongMotionMonitoringforSeismicSafetyofHydraulicStructuresorDL/T5416SpecificationofStrongMotionSafetyMonitoringforHydraulicStructures.
·8·
4Site,foundationandslope
4.1Site
4.1.1Insiteselectionforahydraulicstructure,acomprehensiveevaluationshallbeperformedintermsoftectonicactivity,thestabilityofsitefoundationandslope,andtheriskofsecondarydisasters,etc.,basedonengineeringgeologicalandhydrogeologicalexplorationandseismicityinvestigation.Thesiteshallbeclassifiedintofourcategories:favorable,normal,unfavorableandhazardousaccordingtoTable4.1.1.Favorableornormalsiteforseismicsafetyshouldbeselected,whileunfavorableandhazardoussitesshouldbeavoided.Athoroughseismicsafetyeyaluationmustbeconductedforadamconstructedinunfavorableandhazardoussites.
Table4.1.1Classificationofsite
Siteclass
Tectonicactivity
Stabilityofsitefoundationandslope
Riskofsecondarydisaster
Favorable
Noactivefaultwithin25kmaroundthesite,withbasicintensityofVI
Good
Verylow
Normal
Noactivefaultwithin5kmaroundthesite,withbasicintensityofⅡ
Fair
Low
Unfavorable
Thereareactivefaultsoflessthan10kminlengthwithin5kmaroundthesite,andseismogenicstructureswithamagnitudelessthan5.0.Thebasic
intensityisVI
Poor
High
Hazardous
Thereareactivefaultsnotshorterthan10kmwithin5kmaroundthesite,andseismogenicstruetureswithamagnitudegreaterthan5.0.ThebasicintensityisIX
Verypoor
Veryhigh
4.1.2ThesitesoilsafterexcavationandtreatmentforahydraulicstructureshouldbeclassifiedaccordingtotheshearwavevelocityofsoillayersshowninTable4.1.2,andshallbeinaccordancewiththefollowingrequirements:
1Theshearwavevelocityv,ofsitesoil,ortheequivalentshearwavevelocityofeachsoillayerbeneaththefoundationinthecaseofmulti-layeredsitesoil,shallbecalculatedaccordingtothefollowingformula:
(4.1.2)
whered₀—overburdenthickness(m);
d—thicknessoftheithsoillayer(m);
v.—shearwavevelocityoftheithsoillayer(m/s);
n—numberofoverburdensoillayers.
2Thedeterminationofoverburdenthicknessdoshallbeinaccordancewiththefollowingrequirements:
1)Thethicknessshallbedeterminedbythedistancefromthegroundorfoundationsurfacetothe
·9·
topofthesoillayer,whoseshearwavevelocityismorethan500m/sandtheshearwavevelocityoflayersbeneathwhichisnotlessthan500m/s.
2)Thethicknessshallbedeterminedbythedistancefromthegroundorfoundationsurfacetothetopofthelayer,whosedepthismorethan5mandshearwavevelocityismorethan2.5timestheoverlyingsoillayerandtheshearwavevelocityofitselfandunderlyinglayersisnotlessthan400m/s.Thebouldersandlenticleswithashearwavevelocitygreaterthan500m/sshallbedeemedthesameassurroundingsoillayer.
3)Thehardrocklayerintercalatedinsoilshallbeconsideredasrigidbodyanditsthicknessshallbedeductedfromtheoverburdenthickness.
Table4.1.2Classificationofsitesoil
Sitesoilclass
Shearwavevelocityv(m/s)
Descriptionsandproperties
Hardrock
v₅>800
Stiff,hardandintactrocks
Softrockandhardsoil
800≥v,>500
Fracturedandpartiallyfracturedrocks,orsoftandintermediaterocks;densesandygravels
Moderatelyhardsoil
500≥v,>250
Moderate-denseandslight-densesandygravels;densecoarsesandandmediumsand;hardclayorsilt
Moderatelysoftsoil
250≥v.>150
Slight-densegravels,coarsesand,mediumsandandfinesandandsiltysand;ordinaryclayandsilt
Softsoil
v≤150
Muck;muckysoil;loosesandysoil;miscellaneousfill
4.1.3Sitesshallbeclassifiedintofiveclasses,namelyI₀,I₁,I,Ⅲ,andIV,accordingtothetypeofsitesoilandoverburdenthickness,asshowninTable4.1.3.
Table4.1.3Classificationofsite
Sitesoilclass
Overburdenthicknessd。(m)
0
0<d₀≤3
3<d
5≤d₀≤15
15<d₀≤50
50<d₀≤80
do>80
Hardrock
I₀
-
Softrockandhardsoil
I₁
-
Moderatelyhardsoil
-
I₁
Ⅱ
Moderatelysoftsoil
-
I₁
Ⅱ
Ⅲ
Softsoil
-
I₁
Ⅱ
Ⅲ
IV
4.2Foundation
4.2.1Inseismicdesignoffoundationforhydraulicstructures,thetype,load,hydropowerandoperatingconditionsofstructures,aswellasengineeringgeologicalandhydrogeologicalconditionsoffoundationandbankslopeshallbeconsideredcomprehensively.
4.2.2Forfoundationandbankslopeofwater-retainingstructures,suchasdamandsluice,thecriteriaonstabilityagainstearthquakeliquefaction,earthquakesubsidenceofweakclayandseepagedeformationunderdesignseismicactionshallbemet.Thedetrimentaldeformationtothestructuresshallbeavoided.
4.2.3Forweakdiscontinuitiesinfoundationandbankslopeofhydraulicstructures,suchasfaults,fracturedzones,dislocationzones,andespecially,low-dipclay-interbeddedlayersandargillization-liable
·10·
rocklayers,thestabilityandallowabledeformationunderdesignseismicact
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年兰州成功学校高三年级辅导教师招聘笔试备考题库及答案解析
- 2026年吉林省吉勤服务集团有限责任公司社会化公开招聘(29人)考试备考题库及答案解析
- 2026年河北承德市承德县公开招聘消防设施操作员8名考试备考试题及答案解析
- 2026年兰州新区石化产业投资集团有限公司急需紧缺人员招聘112人笔试备考题库及答案解析
- 2026铜川市新区文家中学教师招聘考试备考试题及答案解析
- 2026中国农业科学院第一批招聘359人考试备考试题及答案解析
- 2026年昆明市五华区普吉街道社区卫生服务中心招聘非事业编制工作人员(1人)考试备考题库及答案解析
- 2026年国家海洋环境监测中心面向社会公开招聘工作人员14人考试备考题库及答案解析
- 2026重庆现代制造职业学院招聘考试参考试题及答案解析
- 2026年平安银行西安分行实习生招募笔试模拟试题及答案解析
- 老同学聚会群主的讲话发言稿
- 国家开放大学最新《监督学》形考任务(1-4)试题解析和答案
- 天然气输气管线阴极保护施工方案
- 高血压问卷调查表
- QC成果提高花岗岩砖铺装质量
- GB/T 25156-2010橡胶塑料注射成型机通用技术条件
- GB/T 25085.3-2020道路车辆汽车电缆第3部分:交流30 V或直流60 V单芯铜导体电缆的尺寸和要求
- GB/T 242-2007金属管扩口试验方法
- GB/T 21776-2008粉末涂料及其涂层的检测标准指南
- 第六单元作文素材:批判与观察 高一语文作文 (统编版必修下册)
- 全新版尹定邦设计学概论1课件
评论
0/150
提交评论