《水工建筑物抗震设计标准》(GB51247-2018)_第1页
《水工建筑物抗震设计标准》(GB51247-2018)_第2页
《水工建筑物抗震设计标准》(GB51247-2018)_第3页
《水工建筑物抗震设计标准》(GB51247-2018)_第4页
《水工建筑物抗震设计标准》(GB51247-2018)_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Foreword

AccordingtotherequirementsofDocumentJIANBIAO[2012]No.5issuedbytheMinistryofHousingandUrban-RuralDevelopment(MOHURD)ofthePeople'sRepublicofChina—"NoticeonPrintingandDistributing'theDevelopmentandRevisionPlanofNationalEngineeringConstructionStandardsin2012'",andafterextensiveinvestigationandresearch,summarizationofpracticalexperience,andwidesolicitationofopinions,thedraftinggrouphaspreparedthisstandard.

Thisstandardcomprises14chaptersand2appendixeswiththemaintechnicalcontentsonseismicdesignofhydraulicstructuresofhydropowerplant,covering:generalprovisions;termsandsymbols;basicrequirements;site,foundationandslope;seismicactionandseismiccalculation;embankmentdam;gravitydam;archdam;sluice;undergroundhydrauliestructures;intaketower;penstockandsurfacepowerhouseofhydropowerstation;aqueduct;shiplift,etc.

Theprovisionsprintedinboldtypearemandatoryonesandmustbeimplementedstrictly.

TheMinistryofHousingandUrban-RuralDevelopmentofthePeople'sRepublicofChinaisinchargeofadministrationofthisstandardandexplanationofitsmandatoryprovisions,theMinistryofWaterResourcesofthePeople'sRepublicofChinaisresponsibleforitsroutinemanagement,ChinaInstituteofWaterResourcesandHydropowerResearchisinchargeofexplanationofspecifictechnicalcontents.Duringimplementationofthisstandard,anycommentsandadvicescanbepostedorpassedontoChinaInstituteofWaterResourcesandHydropowerResearch(Address:No.20,ChegongzhuangWestRoad,HaidianDistrict,Beijing,Postcode:100048)

ChiefDevelopmentOrganization,Co-DevelopmentOrganization,ChiefDraftersandChiefReviewersofthisstandard:

ChiefDevelopmentOrganization:

ChinaInstituteofWaterResourcesandHydropowerResearch

Co-DevelopmentOrganization:

ChinaWaterConservancyandHydropowerInvestigationandDesignAssociation

ChiefDrafters:

CHENHouqunLIDeyuHUXiaoGUANZhichengYANGZeyan

LIUXiaoshengWANGHaiboZHAOJianmingSHAOJiannanDUXiaokaiZHANGYanhongZHANGBoyanWANGZhongningTUJinLIMin

ZHANGCuiranOUYANGJinhuiMAHuaifa

ChiefReviewers:

GAOAnzeLIUZhimingZHOUJianpingDANGLincaiZHANGChuhanLINGaoZHOUJianYUYanxiangWANGYayongJIANGGuocheng

LIXiansheSIFu'an

·1·

Contents

1Generalprovisions (1)

2Termsandsymbols (2)

2.1Terms (2)

2.2Symbols (4)

3Basicrequirements (6)

4Site,foundationandslope (8)

4.1Site (8)

4.2Foundation (9)

4.3Slope (10)

5Seismicactionandseismiccalculation (12)

5.1Seismicgroundmotioncomponentsandcombinion (12)

5.2Classificationofseismicactions (12)

5.3Designresponsespectrum (13)

5.4Combinationofseismicactionwithotheractions (14)

5.5Structuralmodelingandcalculationmethod (14)

5.6Dynamicpropertiesofconcreteandfoundationrockforhydraulicstructures (15)

5.7Seismiedesignforutimanlinitstateswitparialfatrs (16)

5.8Seismiccalculationforappartenantstructures (17)

5.9Seismicearnhprcsue (17)

6Embankmentdam (19)

6.1Seismiecalculation (19)

6.2sesmicmeasures (21)

7Gravitydam (23)

7.1Seismiccalculation (23)

7.2Seismicmeasures (25)

8Archdam (27)

8.1Seismiccalculation (27)

8.2Seismicmeasures (29)

9Sluice (30)

9.1Seismiccalculation (30)

9.2Seismicmeasures (31)

10Undergroundhydraulicstructures (33)

10.1Seismiccalculation (33)

10.2Seismicmeasures (34)

11Intaketower (35)

11.1Seismiccalculation (35)

11.2Seismicmeasures (38)

·2·

12Penstockandsurfacepowerhouseofhydropowerstation (40)

12.1Penstock (40)

12.2Surfacepowerhouse (40)

13Aqueduct (42)

13.1Seismiccalculation (42)

13.2Seismicmeasures (42)

14Shiplift (44)

14.1Seismiecalculation (4)

14.2Seismicmeasures (44)

AppendixASeismicstabilitycalculationofembankmentdamsbypseudo-staticmethod (46)

AppendixBCalculationofhydrodynamicpressureinaqueduct (48)

Explanationofwordinginthisstandard (51)

Listofquotedstandards (52)

·1·

1Generalprovisions

1.0.1ThisstandardisformulatedinaccordancewiththeLawofthePeople'sRepublicofChinaonProtectingAgainstandMitigatingEarthquakeDisasters,andwithaviewtocarryingoutthepolicyofpreventionfirst,tomitigateearthquakedamageandpreventsecondarydisastersthroughseismicdesignofhydraulicstructures.

1.0.2Thehydraulicstructuredesignedasperthisstandardshallbeabletoresisttheseismicactionofthedesignintensity,andremainfunctionalafterrepairoflocaldamages,ifany.

1.0.3ThisstandardismainlyapplicabletoseismicdesignofGrade1,Grade2andGrade3hydraulicstructureswithdesignintensityofV,Ⅱ,VandIX,suchastheroller-compactedembankmentdam,concretegravitydam,concretearchdam,sluice,undergroundhydraulicstructures,intaketower,penstockandsurfacepowerhouseofhydropowerstation,aqueduct,shiplift,etc.

ForhydraulicstructureswithdesignintensityofVI,seismiccalculationmaynotberequired,butseismicmeasuresshallstillbetakeninaccordancewiththisstandard.

ForhydraulicstructureswithdesignintensityaboveIX,andwater-retainingstructureshigherthan200morwithunfavorableconditions,specialstudyanddemonstrationshallbecarriedoutontheirseismicsafety.

1.0.4Forgeneralprojects,thedesignpeakgroundacceleration(PGA)ontheprojectsiteandcorrespondingdesignintensityshallbedeterminedinaccordancewiththecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina.

1.0.5Forlarge-scale(Rank1)projectswithadamheightover200morreservoirstoragecapacityover10billionm³intheregionswithabasicintensityofVorabove,andlarge-scale(Rank1)projectswithadamheightover150mintheregionswithabasicintensityofVIorabove,thedesignpeakgroundaccelerationontheprojectsiteandcorrespondingdesignintensityshallbedeterminedbasedonsite-specificseismicsafetyevaluation.

1.0.6ForGrade1andGrade2damswithaheightover90m,mainstructuresofRank1pumpedstoragepowerstationsandimportantstructuresofwaterdiversionprojectsintheregionswithabasicintensityofVⅡorabove,thedesignpeakgroundaccelerationontheprojectsiteandcorrespondingdesignintensitymaybedeterminedbasedonsite-specificseismicsafetyevaluationaftertechno-economicdemonstration.

1.0.7Inadditiontothisstandard,theseismicdesignofhydraulicstructuresshallcomplywithotherrcurrentrelevantstandardsofthenation.

·2·

2Termsandsymbols

2.1Terms

2.1.1seismicdesign

Specialdesignofengineeringstructuresinearthquakeregions,generally/includingseismiccalculationandseismicmeasures.

2.1.2basicintensity

Seismicintensityofgeneralsitewitha10%probabilityofexceedancein50years,whichisusuallydeterminedaccordingtothepeakgroundaccelerationspecifiedinthecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina,andcorrespondingtotheseismicintensityspecifiedintheAppendix.Formajorprojects,itshallbedeterminedthroughsite-specificseismicsafetyevaluation.

2.1.3designintensity

Seismicintensityforengineeringfortificationdeterminedonthebasisofbasicintensity.

2.1.4reservoirearthquake

Earthquakerelatedtoreservoirimpounding,whicheveroccurswithinascopeoflessthan10kmawayfromthereservoirrims.

2.1.5maximumcredibleearthquake(MCE)

Earthquakewithpotentialmaximumgroundmotionassessedbasedontheregionalgeologicalandseismologicalconditionsaroundprojectsite.

2.1.6scenarioearthquake

Earthquakehavingaparticularmagnitudeandepicentraldistance,withthemaximumprobabilityofexceedanceofdesignpeakgroundaccelerationlinasourcethatmakesthemaximumcontributiontodesignpeakgroundaccelerationonaprojectsiteamongpotentialseismicsources,basedontheresultofsite-specificseismicsafetyevaluation.

2.1.7seismicgroundmotion

Groundmotioninducedbyearthquake.

2.1.8seismicaction

Dynamicactionsofseismicgroundmotiononstructures.

2.1.9hangingwalleffect

Phenomenonthatseismicgroundmotionofhangingwallabovetheinclinedseismogenicfaultislargerthanthatoffootwall.

2.1.10peakgroundacceleration(PGA)

Maximumabsolutevalueofgroundmasspointmotionaccelerationduringearthquake.

2.1.11designearthquake

Seismicgroundmotionforseismicfortificationcorrespondingtodesignintensity,whoseparametersincludepeakgroundacceleration,responsespectrum,duration,andaccelerationtimehistory.

2.1.12designpeakgroundacceleration

Peakgroundaccelerationoffortificationprobabilitylevelspecifiedbysite-specificseismicsafety

·3·

evaluationonprojectsite,orgenerallycorrespondingtothedesignintensity.

2.1.13seismiceffect

Dynamiceffectsuchasstructureinternalforce,deformation,slidingandcrackingcausedbyseismicaction.

2.1.14seismicliquefaction

Processinwhich,inducedbytheseismicgroundmotion,theparticlesofsaturatedcohesionlesssoilorlesscohesivesoilgrowdenser,soilporewaterpressureincreases,andtheeffectivestressofthesoilapproacheszero.

2.1.15designresponsespectrum

Curvethatplotsthemaximumgroundaccelerationasafunctionofthenaturalvibrationperiodofsingle-degree-of-freedom(SDOF)systemconsideringagivendampingratio,whichmaybeexpressedbytheratioofthemaximumaccelerationresponsetothepeakgroundacceleration.

2.1.16dynamicmethod

Methodtoanalyzeseismiceffectofstructurebasedonthetheoryofstructuraldynamics.

2.1.17timehistoryanalysismethod

Methodtoanalyzeseismiceffectinwholetimehistorybyintegratingthegoverningmotionequationofstructurewithaccelerogramasseismicinput.

2.1.18modedecompositionmethod

Methodtoanalyzeseismiceffeetofstructure,inwhichthetotalseismiceffectofthestructureisobtainedbysuperpositionofseismiceffectofeachmode.Itiscalledthemodedecompositiontimehistoryanalysismethod,whenthetimehistoryanalysisisusedtoobtaintheseismiceffectofeachmode.Itiscalledthemodedecompositionresponsespectrummethod,whentheresponsespectrumisusedtoobtaintheseismiceffectofeachmode.

2.1.19squarerootofthesumofsquares(SRSS)method

Methodtoevaluatethemaximumresponseofstructurebythesquarerootofthesumofthesquaresofvariousmodeseismiceffects.

2.1.20completequadraticcombination(CQC)method

Methodtoevaluatethemaximumresponseofstructurebythesquarerootofthesumofquadratictermsofvariousmodeseismiceffectsandcouplingterms.

2.1.21seismichydrodynamicpressure

Dynamicpressureofwateronstructurecausedbyearthquake.

2.1.22seismicearthpressure

Dynamicpressureofsoilmassonstructurecausedbyearthquake.

2.1.23pseudo-staticmethod

Staticanalysismethodtakingtheproductofgravityaction,ratioofdesignseismicpeakaccelerationtogravityacceleration,specifiedseismiceffectreductionfactoranddynamicdistributioncoefficientasthedesignseismicaction.

2.1.24seismiceffectreductionfactor

Reductionfactorforseismiceffectsintroducedduetosimplificationinanalysismethod.

2.1.25naturalvibrationperiod

Timeintervalforstructuretocompleteafreevibrationcycleinacertainvibrationmode.Thenaturalvibrationperiodcorrespondingtothefirstvibrationmodeiscalledthefundamentalperiod.

·4·

2.1.26seismicmeasures

Seismicdesignexceptthecalculationofseismicactionandresistance,includingdetailsofseismicdesign.

2.1.27detailsofseismicdesign

Variousdetailedmeasuresthatmustbetakenforstructuralandnon-structuralmemberswithoutjustificationbyseismiccalculation,accordingtobasicrequirementsofseismicdesign.

2.2Symbols

2.2.1Actionsandeffects:

ah—representativevalueofhorizontaldesignpeakgroundacceleration;

a、—representativevalueofverticaldesignpeakgroundacceleration;

E—representativevalueofhorizontalseismicinertialforceactingonmasspointi;

Fe—representativevalueofseismicactiveearthpressure;

F₀—representativevalueoftotalseismichydrodynamicpressureonwater-contactfaceperunitwidthofstructure;

g—gravityacceleration,whichistakenas9.81m/s²;

Gg—characteristicvalueofstructuretotalgravityactionthatproducesseismicinertialforce;Pw(h)—representativevalueofseismichydrodynamicpressureatwaterdepthh;

a—dynamicdistributioncoefficientofseismicinertialforceofmasspointi;

β—designresponsespectrum;

ξ—seismiceffectreductionfactor.

2.2.2Materialpropertiesandgeometricparameters:

ak—characteristicvalueofgeometricparameter;

f—characteristicvalueofmaterialproperty;

K—characteristicvaluesoflongitudinalstiffnesscoefficientofunitlengthoftunnelsurroundingmass;

K—characteristicvaluesoftransversestiffnesscoefficientofunitlengthoftunnelsurroundingmass;

N—blowcountofstandardpenetrationtest;

N.—criticalblowcount;

v,—characteristicvalueofcompressionwavevelocity;

v₅—characteristicvalueofshearwavevelocity;

Pw—characteristicvalueofwatermassdensity.

2.2.3Limitstatedesignusingpartialfactor:

E—representativevalueofseismicaction;

Gk—characteristicvalueofpermanentaction;

Qk—characteristicvalueofvariableaction;

R—resistanceofstructure;

S—actioneffectofstructure;

γo—importancefactorofstructure;

ya—structuralfactor,safetymarginintroducedfornon-randomuncertaintyontheultimatelimitstateofbearingcapacity;

·5·

YE—partialfactorforseismicaction;

YG—partialfactorforpermanentaction;

Ym—partialfactorformaterialproperty;

YQ—partialfactorforvariableaction;

ψ—designsituationfactor.

2.2.4Others:

T₈—characteristicperiod;

T—naturalvibrationperiodofstructure;

λm—massratioofappurtenantstructuretomainstructure;

λ—fundamentalfrequencyratioofappurtenantstructuretomainstructure.

·6·

3Basicrequirements

3.0.1TheseismicfortificationclassofhydraulicstructuresshallbedeterminedbasedontheirimportanceandbasicseismicintensityontheirsitesaccordingtoTable3.0.1.

Table3.0.1Classificationofseismicfortification

Seismicfortificationclass

Gradeofstructure

Sitebasicintensity

A

Water-retainingandimportantwater-releasingstructuresofGrade1

≥V

B

Non-water-retainingstructureofGrade1andwater-retainingstructureofGrade2

C

Non-water-retainingstructureofGrade2andstructureofGrade3

≥MⅡ

D

StructureofGrade4andGrade5

Note:Importantwater-releasingstructuresrefertothosewhosefailuremightendangerthesafetyofwater-retainingstructures.

3.0.2Theseismicfortificationclassofhydraulicstructuresshallberepresentedintermsofdesignintensityandhorizontaldesignpeakgroundaccelerationonflatgroundsurfaceaftersiteclassadjustment,andshallcomplywithArticle3.0.3toArticle3.0.8inthisstandard.

3.0.3Forhydraulicstructures_whoseseismicfortificationclassesaredeterminedinaccordancewiththecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina,inthecaseofgeneralprojects,thevalueofthepeakgroundaccelerationontheirsitesshallbetakenfromzonationmapastherepresentativevalueofthehorizontaldesignpeakgroundacceleration,andthecorrespondingbasicintensityistakenasthedesignintensity.InthecaseofhydraulicstructuresassignedtoseismicfortificationClassA,theirdesignintensityshallbeonelevelhigherthanthebasicintensity,andthe_representativevalueofthehorizontaldesignpeakgroundaccelerationshallbedoubledaccordingly.

3.0.4Forprojectswhoseseismicfortificationcriteriaarebasedonsite-specificseismicsafetyevaluation,theprobabilityofexceedanceoftherepresentativevaluesofhorizontaldesignpeakgroundacceleration,P¹00,ontheflatrockfoundationsurfaceshallbe0.02in100yearsforwater-retainingstructuresandimportantwater-releasingstructuresassignedtoseismicfortificationClassA.Anprobabilityofexceedancein50years,P⁵o,shallbe0.05forGrade1non-water-retainingstructures.Anprobabilityofexceedancein50years,Pso,shallbe0.10forhydraulicstructuresassignedtootherseismicfortificationclassesthanClassA,andthecorrespondingpeakground

accelerationshallnotbelowerthanthatspecifiedinthecurrentnationalstandardGB18306SeismicGroundMotionParametersZonationMapofChina.

3.0.5ForhydraulicstructuresassignedtoseismicfortificationClassAwhosedesignseismicparametersshallbeprovidedbythesite-specificseismicsafetyevaluation,aspecialdemonstrationonsafetymarginunderthemaximumcredibleearthquake(MCE)shallbecarriedoutondisasterpreventionoftheuncontrolledreleaseofreservoirinadditiontotheseismicdesignunderdesignpeakgroundacceleration.Aspecialreportonseismicsafetyshallbeprepared.TheMCEofthesiteshallbedeterminedbythedeterministicmethodortheprobabilisticmethodwithanprobabilityofexceedanceof0.01in100years.

·7·

3.0.6Inthespecialreportonseismicsafety,relevantsite-specificdesignresponsespectrumshouldbedeterminedbasedonscenarioearthquakecorrespondingtohorizontaldesignpeakgroundacceleration,andartificialaccelerogramsaregenerated.Foranalyzingtheseismiceffectonstructureswithstrongnon-linearity,theinfluencearisingfromnon-stationaryfrequencyofgroundmotionshouldbestudiedwhenconditionspermit.Whenthedistancefromtheseismogenicfaulttothesiteislessthan30kmanditsinclinationangleissmallerthan70°,hangingwalleffectshouldbeconsidered.Whenthedistanceislessthan10kmandthemagnitudeisover7.0,theruptureprocessofseismogenicfaultastheareasourceofthenear-fieldstrongearthquakegroundmotionsshouldbestudiedtogeneratedirectlytherandomtimehistoriesofgroundmotions,andthentoselectthetimehistorieswiththepeakperiodofevolutionaryspectrumclosesttothefundamentalperiodofstructure.

3.0.7Whenthegradeofwater-retainingstructureisraisedduetothedamheight,specialstudyontheseismicfortificationstandardshallbeperformedandreportedtocompetentauthoritiesforapproval.

3.0.8Seismicactionsmaynotbeinvolvedinthecaseofrelativelyshortperiodofconstruction.

3.0.9Fornewreservoirswiththedamhigherthan100mandstoragecapacitylargerthan

500millionm³,anevaluationofreservoirearthquakeshallbeconducted.Inthecaseofpotentialreservoirearthquakeofmagnitudehigherthan5.0orepicentralintensityhigherthanVⅡ,areservoirearthquakemonitoringnetworkshallbeestablishedandputintooperationatleastoneyearpriortotheinitialimpoundment.

3.0.10Theseismicdesignforhydraulicstructuresshallincludeseismiccalculationandseismicmeasures,andshallbecompliancewiththefollowingrequirements:

1Selecttheregion,siteandstructuretypefavorableforseismicresistanceaccordingtotheseismicrequirements.

2Preventstabilityfailureoffoundationandslopesadjacenttothestructures.

3Selectsafeandcost-effectivestructuresandmeasuresforearthquakeresistance.

4Proposetheconstructionqualitycontrolmeasuresmeetingtheseismicsafetyrequirementsindesigndocuments.

5Arrangewater-releasingfacilitiesthatcanlowerthereservoirlevelasquicklyaspossible.

6Conductseismicdesignsfornon-structuralelements,appurtenantelectromechanicalequipmentandtheirconnectionswithmainstructuresinhydraulicstructures,suchassluice,intaketowerandshiplift.

3.0.11Therequirementsforemergencyplantopreventandmitigateearthquakehazardshallbeeproposedinthedesigndocumentforhydraulicstructureswithseismicrequirements.

3.0.12DynamicmodeltestshouldbeconductedfordamsassignedtoseismicfortificationClassAwiththedesignintensityofVⅢandabove,andaheightofmorethan150m.

3.0.13Theseismicmonitoringarraydesignforstrong-motionobservationshallmeettherequirementsofthecurrentprofessionalstandardSL486TechnicalSpecificationofStrongMotionMonitoringforSeismicSafetyofHydraulicStructuresorDL/T5416SpecificationofStrongMotionSafetyMonitoringforHydraulicStructures.

·8·

4Site,foundationandslope

4.1Site

4.1.1Insiteselectionforahydraulicstructure,acomprehensiveevaluationshallbeperformedintermsoftectonicactivity,thestabilityofsitefoundationandslope,andtheriskofsecondarydisasters,etc.,basedonengineeringgeologicalandhydrogeologicalexplorationandseismicityinvestigation.Thesiteshallbeclassifiedintofourcategories:favorable,normal,unfavorableandhazardousaccordingtoTable4.1.1.Favorableornormalsiteforseismicsafetyshouldbeselected,whileunfavorableandhazardoussitesshouldbeavoided.Athoroughseismicsafetyeyaluationmustbeconductedforadamconstructedinunfavorableandhazardoussites.

Table4.1.1Classificationofsite

Siteclass

Tectonicactivity

Stabilityofsitefoundationandslope

Riskofsecondarydisaster

Favorable

Noactivefaultwithin25kmaroundthesite,withbasicintensityofVI

Good

Verylow

Normal

Noactivefaultwithin5kmaroundthesite,withbasicintensityofⅡ

Fair

Low

Unfavorable

Thereareactivefaultsoflessthan10kminlengthwithin5kmaroundthesite,andseismogenicstructureswithamagnitudelessthan5.0.Thebasic

intensityisVI

Poor

High

Hazardous

Thereareactivefaultsnotshorterthan10kmwithin5kmaroundthesite,andseismogenicstruetureswithamagnitudegreaterthan5.0.ThebasicintensityisIX

Verypoor

Veryhigh

4.1.2ThesitesoilsafterexcavationandtreatmentforahydraulicstructureshouldbeclassifiedaccordingtotheshearwavevelocityofsoillayersshowninTable4.1.2,andshallbeinaccordancewiththefollowingrequirements:

1Theshearwavevelocityv,ofsitesoil,ortheequivalentshearwavevelocityofeachsoillayerbeneaththefoundationinthecaseofmulti-layeredsitesoil,shallbecalculatedaccordingtothefollowingformula:

(4.1.2)

whered₀—overburdenthickness(m);

d—thicknessoftheithsoillayer(m);

v.—shearwavevelocityoftheithsoillayer(m/s);

n—numberofoverburdensoillayers.

2Thedeterminationofoverburdenthicknessdoshallbeinaccordancewiththefollowingrequirements:

1)Thethicknessshallbedeterminedbythedistancefromthegroundorfoundationsurfacetothe

·9·

topofthesoillayer,whoseshearwavevelocityismorethan500m/sandtheshearwavevelocityoflayersbeneathwhichisnotlessthan500m/s.

2)Thethicknessshallbedeterminedbythedistancefromthegroundorfoundationsurfacetothetopofthelayer,whosedepthismorethan5mandshearwavevelocityismorethan2.5timestheoverlyingsoillayerandtheshearwavevelocityofitselfandunderlyinglayersisnotlessthan400m/s.Thebouldersandlenticleswithashearwavevelocitygreaterthan500m/sshallbedeemedthesameassurroundingsoillayer.

3)Thehardrocklayerintercalatedinsoilshallbeconsideredasrigidbodyanditsthicknessshallbedeductedfromtheoverburdenthickness.

Table4.1.2Classificationofsitesoil

Sitesoilclass

Shearwavevelocityv(m/s)

Descriptionsandproperties

Hardrock

v₅>800

Stiff,hardandintactrocks

Softrockandhardsoil

800≥v,>500

Fracturedandpartiallyfracturedrocks,orsoftandintermediaterocks;densesandygravels

Moderatelyhardsoil

500≥v,>250

Moderate-denseandslight-densesandygravels;densecoarsesandandmediumsand;hardclayorsilt

Moderatelysoftsoil

250≥v.>150

Slight-densegravels,coarsesand,mediumsandandfinesandandsiltysand;ordinaryclayandsilt

Softsoil

v≤150

Muck;muckysoil;loosesandysoil;miscellaneousfill

4.1.3Sitesshallbeclassifiedintofiveclasses,namelyI₀,I₁,I,Ⅲ,andIV,accordingtothetypeofsitesoilandoverburdenthickness,asshowninTable4.1.3.

Table4.1.3Classificationofsite

Sitesoilclass

Overburdenthicknessd。(m)

0

0<d₀≤3

3<d

5≤d₀≤15

15<d₀≤50

50<d₀≤80

do>80

Hardrock

I₀

-

Softrockandhardsoil

I₁

-

Moderatelyhardsoil

-

I₁

Moderatelysoftsoil

-

I₁

Softsoil

-

I₁

IV

4.2Foundation

4.2.1Inseismicdesignoffoundationforhydraulicstructures,thetype,load,hydropowerandoperatingconditionsofstructures,aswellasengineeringgeologicalandhydrogeologicalconditionsoffoundationandbankslopeshallbeconsideredcomprehensively.

4.2.2Forfoundationandbankslopeofwater-retainingstructures,suchasdamandsluice,thecriteriaonstabilityagainstearthquakeliquefaction,earthquakesubsidenceofweakclayandseepagedeformationunderdesignseismicactionshallbemet.Thedetrimentaldeformationtothestructuresshallbeavoided.

4.2.3Forweakdiscontinuitiesinfoundationandbankslopeofhydraulicstructures,suchasfaults,fracturedzones,dislocationzones,andespecially,low-dipclay-interbeddedlayersandargillization-liable

·10·

rocklayers,thestabilityandallowabledeformationunderdesignseismicact

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论