四川省南充市第一中学2026届高一数学第一学期期末检测试题含解析_第1页
四川省南充市第一中学2026届高一数学第一学期期末检测试题含解析_第2页
四川省南充市第一中学2026届高一数学第一学期期末检测试题含解析_第3页
四川省南充市第一中学2026届高一数学第一学期期末检测试题含解析_第4页
四川省南充市第一中学2026届高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省南充市第一中学2026届高一数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于的方程的所有实数解的和为A.2 B.4C.6 D.82.若都是锐角,且,,则A. B.C.或 D.或3.已知扇形的圆心角为,面积为,则扇形的弧长等于(

)A. B.C. D.4.下列函数中,值域为的偶函数是A. B.C. D.5.平行线与之间的距离等于()A. B.C. D.6.若是圆上动点,则点到直线距离的最大值A.3 B.4C.5 D.67.尽管目前人类还无法精准预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级之间的关系式为.年月日,日本东北部海域发生里氏级地震,它所释放出来的能量是年月日我国四川九寨沟县发生里氏级地震的()A.倍 B.倍C.倍 D.倍8.下列命题中,其中不正确个数是①已知幂函数的图象经过点,则②函数在区间上有零点,则实数的取值范围是③已知平面平面,平面平面,,则平面④过所在平面外一点,作,垂足为,连接、、,若有,则点是的内心A.1 B.2C.3 D.49.对于函数,下列说法正确的是A.函数图象关于点对称B.函数图象关于直线对称C.将它的图象向左平移个单位,得到的图象D.将它的图象上各点的横坐标缩小为原来的倍,得到的图象10.若幂函数的图象经过点,则=A. B.C.3 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上的奇函数,当时,为常数),则=_________.12.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________13.已知,则的值为___________.14.已知是定义在上的奇函数,当时,,则时,__________15.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)16.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(Ⅰ)求证:A1C1⊥BC1;(Ⅱ)求证:AC1∥平面CDB118.如图,在圆锥中,已知,圆的直径,是弧的中点,为的中点.(1)求异面直线和所成的角的正切值;(2)求直线和平面所成角的正弦值.19.已知函数,其中.(1)求函数的定义域;(2)若函数的最大值为2.求a的值.20.已知函数,其中是自然对数的底数,(1)若函数在区间内有零点,求的取值范围;(2)当时,,,求实数的取值范围21.已知函数是上的奇函数.(1)求实数a的值;(2)若关于的方程在区间上恒有解,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】本道题先构造函数,然后通过平移得到函数,结合图像,计算,即可【详解】先绘制出,分析该函数为偶函数,而相当于往右平移一个单位,得到函数图像为:发现交点A,B,C,D关于对称,故,故所有实数解的和为4,故选B【点睛】本道题考查了函数奇偶性判定法则和数形结合思想,绘制函数图像,即可2、A【解析】先计算出,再利用余弦的和与差公式,即可.【详解】因为都是锐角,且,所以又,所以,所以,,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大3、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题4、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D5、C【解析】,故选6、C【解析】圆的圆心为(0,3),半径为1.是圆上动点,则点到直线距离的最大值为圆心到直线的距离加上半径即可.又直线恒过定点,所以.所以点到直线距离的最大值为4+1=5.故选C.7、C【解析】设里氏级和级地震释放出的能量分别为和,可得出,利用对数的运算性质可求得的值,即可得解.【详解】设里氏级和级地震释放出的能量分别为和,由已知可得,则,故故选:C.8、B【解析】①②因为函数在区间上有零点,所以或,即③平面平面,平面平面,,在平面内取一点P作PA垂直于平面与平面的交线,作PB垂直于平面,则所以平面④因为,且,所以,即是的外心所以正确命题为①③,选B9、B【解析】,所以点不是对称中心,对称中心需要满足整体角等于,,A错.,所以直线是对称轴,对称轴需要满足整体角等于,,B对.将函数向左平移个单位,得到的图像,C错.将它的图像上各点的横坐标缩小为原来的倍,得到的图像,D错,选B.(1)对于和来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为(2)三角函数图像平移:路径①:先向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象路径②:先将曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sinωx的图象;然后把曲线向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象10、B【解析】利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值【详解】设幂函数y=f(x)=xα,其图象经过点,∴2α,解得α,∴f(x),∴f(3)故选B【点睛】本题考查了幂函数的定义与应用问题,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.12、3【解析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.13、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:14、【解析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式15、相交【解析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.16、①【解析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)要证线线垂直,转证平面,(2)要证AC1∥平面CDB1,转证//即可.试题解析:证明(法一:故有,A.法二:;由直三棱柱;;平面;平面,平面,平面,(连接相交于点O,连OD,易知//,平面,平面,故//平面.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18、(1)2;(2)【解析】(1)由三角形中位线定理可得∥,则可得是异面直线和所成的角,然后在中求解即可,(2)直线与平面所成的角,应先作出直线在平面内的射影,则斜线与射影所成的角即为所求.过点O向平面PAC作垂线,则可证得即为直线与平面所成的角,进而求出其正弦值【详解】(1)因为分别是和的中点所以∥,所以异面直线和所成的角为,在中,,是弧的中点,为的中点,所以,因为平面,平面,所以,因为所以,(2)因为,为的中点,所以,因为平面,平面,所以,因为,所以平面因为平面,所以平面平面,在平面中,过作于,则平面,连结,则是在平面上的射影,所以是直线和平面所成的角在中,在中,19、(1);(2).【解析】(1)根据对数的性质进行求解即可;(2)根据对数的运算性质,结合配方法、对数复合函数的单调性进行求解即可.【详解】(1)要使函数有意义,则有,解得,所以函数的定义域为.(2)函数可化.因为,所.因,所以,即,由,解得.20、(1);(2).【解析】(1)解法①:讨论或,判断函数的单调性,利用零点存在性定理即可求解;解法②:将问题转化为在区间上有解,即e有解,讨论或解方程即可求解.(2)解法①:分离参数可得,令,,求出的最大值即可求解;解法②:不等式转化为恒成立,令,,可得函数,,讨论或即可求解.【详解】(1)解法①:当时,,没有零点;当时,函数是增函数,则需要,解得.,满足零点存在定理.因此函数在区间内有一个零点综上所述,的取值范围为.解法②:的零点就是方程的解,即在区间上有解方程变形得,当时,方程无解,当时,解为,则,解得,综上所述,的取值范围为(2)解法①由题意知,,即因为,则,又,令,,则(当且仅当时等号成立),所以,即的取值范围是.解法②由题意知,,即,令,,即,当时,显然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论