版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省辽河高级中学2026届高一数学第一学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,且与的夹角为锐角,则的取值范围是A. B.C. D.2.函数的零点个数为A.1 B.2C.3 D.43.下列函数中哪个是幂函数()A. B.C. D.4.为了得到函数图象,只需把的图象上的所有点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.函数的最大值为()A. B.C. D.6.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“”是全称量词命题;③命题“”的否定为“”;④命题“是的必要条件”是真命题;A.0 B.1C.2 D.37.已知则的值为()A. B.2C.7 D.58.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台9.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.910.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知f(x)是定义在R上的偶函数,且在区间(−∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是12.已知,则的最大值为_______13.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________.14.已知是定义在上的奇函数,当时,,则的值为________________15.已知平面向量,的夹角为,,则=______16.若函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,(1)若,求向量与的夹角;(2)若函数.求当时函数的值域18.已知关于x的不等式的解集为R,记实数a的所有取值构成的集合为M.(1)求M;(2)若,对,有,求t的最小值.19.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,)20.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”概率;(3)事件“点数之和等于或大于11”的概率.21.已知函数(,且)(1)求的值及函数的定义域;(2)若函数在上的最大值与最小值之差为3,求实数的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B考点:本题主要考查平面向量的坐标运算,向量夹角公式点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0.2、C【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数.【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交点,也即有个零点.故选C.【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题.3、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.4、D【解析】利用三角函数图象的平移规律可得结论.【详解】因为,所以,为了得到函数的图象,只需把的图象上的所有点向右平移个单位.故选:D.5、C【解析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【详解】,所以当时,取得最大值,故选:C6、C【解析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“”是全称量词命题;故②正确;对于③:命题,则,故③错误;对于④:可以推出,所以是的必要条件,故④正确;所以正确的命题为②④,故选:C7、B【解析】先算,再求【详解】,故选:B8、D【解析】由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台故选D9、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.二、填空题:本大题共6小题,每小题5分,共30分。11、(【解析】由题意f(x)在(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2a-1)>f(-2)可化为f(212、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:13、【解析】根据题意求出函数的单调区间及所过的定点,进而解出不等式.【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,.所以且在上为增函数,,在上为减函数,.所以的解集为:.故答案为:.14、-7【解析】由已知是定义在上的奇函数,当时,,所以,则=点睛:利用函数奇偶性求有关参数问题时,要灵活选用奇偶性的常用结论进行处理,可起到事半功倍的效果:①若奇函数在处有定义,则;②奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,奇函数奇函数=偶函数偶函数=偶函数;③特殊值验证法15、【解析】=代入各量进行求解即可.【详解】=,故答案.【点睛】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.16、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先求出的坐标,再根据数量积、向量夹角的坐标公式计算可得;(2)根据数量积的坐标公式、二倍角公式以及辅助角公式化简函数解析式,再根据的取值范围,求出的范围,最后根据正弦函数的性质计算可得;【小问1详解】解:因为,当时,,又.所以,,,所以,因为,所以向量与的夹角为.【小问2详解】解:因为,,所以,当时,,所以,则因此函数在时的值域为18、(1)(2)1【解析】(1)分类讨论即可求得实数a的所有取值构成的集合M;(2)先求得的最大值2,再解不等式即可求得t的最小值.【小问1详解】当时,满足题意;当时,要使不等式的解集为R,必须,解得,综上可知,所以【小问2详解】∵,∴,∴,(当且仅当时取“=”)∴,∵,有,∴,∴,∴或,又,∴,∴t的最小值为1.19、(1)函数模型较为合适,且该函数模型的解析式为;(2)月份.【解析】(1)根据两个函数模型增长的快慢可知函数模型较为合适,将点、代入函数解析式,求出、的值,即可得出函数模型的解析式;(2)分析得出,解此不等式即可得出结论.【详解】(1)由题设可知,两个函数、)在上均为增函数,随着的增大,函数的值增加得越来越快,而函数的值增加得越来越慢,由于风眼莲在湖中的蔓延速度越来越快,故而函数模型满足要求.由题意可得,解得,,故该函数模型的解析式为;(2)当时,,故元旦放入凤眼莲的面积为,由,即,故,由于,故.因此,凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份是月份.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性20、(1);(2);(3)【解析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率;(2)根据所有的基本事件的个数,求所求的“点数之和小于”的基本事件的个数,最后利用概率计算公式求解即可;(3)根据所有的基本事件的个数,求所求的“点数之和等于或大于”的基本事件的个数,最后利用概率计算公式求解即可试题解析:抛掷两颗骰子,总的事件有个.(1)记“两颗骰子点数相同”为事件,则事件有6个基本事件,∴(2)记“点数之和小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共交通线路审批管理制度
- 2026年龙州县龙州镇龙北医院公开招聘自聘工作人员16人备考题库及答案详解一套
- 2026年深圳市龙岗区龙城街道清辉幼儿园招聘备考题库参考答案详解
- 厦门市金鸡亭中学2026年校园招聘备考题库及一套参考答案详解
- 中学学生社团活动经费决算制度
- 2026年武汉市七一中学招聘教师备考题库参考答案详解
- 养老院老人心理咨询师晋升制度
- 企业员工培训与素质发展路径目标制度
- 2026年红古区红古镇卫生院招聘护理专业技术人员的备考题库及一套答案详解
- 2026年河源市连平县人民代表大会常务委员会办公室公开招聘编外人员备考题库附答案详解
- 《车辆越野能力分级与评价体系》征求意见稿
- 小儿运动发育迟缓课件
- 非煤矿山机电安全培训课件
- 会计师事务所审计失败原因及对策研究
- 安全员合署办公制度培训课件
- 基于PLC的S7-1200电机控制系统设计
- 多主体协同决策模型-洞察及研究
- 预应力连续梁挂篮施工工艺创新与质量控制研究
- 混凝土搅拌与运输方案
- 2025年潍坊市中考数学试题卷(含标准答案)
- 助学贷款知识普及培训会课件
评论
0/150
提交评论