版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省忻州市忻州第一中学校高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.2.若直线与直线垂直,则a=()A.-2 B.0C.0或-2 D.13.已知命题p:,,则命题p的否定为()A., B.,C., D.,4.双曲线:的实轴长为()A. B.C.4 D.25.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.6.圆关于直线对称,则的最小值是()A. B.C. D.7.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或18.直线关于直线对称的直线方程为()A. B.C. D.9.已知两个向量,,且,则的值为()A.1 B.2C.4 D.810.函数的图象大致为()A. B.C. D.11.下列对动直线的四种表述不正确的是()A.与曲线C:可能相离,相切,相交B.恒过定点C.时,直线斜率是0D.时,直线的倾斜角是135°12.如图是一个程序框图,执行该程序框图,则输出的n值是()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则__________.14.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.15.已知球面上的三点A,B,C满足,,,球心到平面ABC的距离为,则球的表面积为______16.已知实数,满足,则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图三角形数阵中第n行有n个数,表示第i行第j个数,例如,表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m为公差的等差数列,从第三行起每一行的数从左到右构成以m为公比的等比数列(其中).已知.(1)求m及;(2)记,求.18.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.19.(12分)如图,已知椭圆的左顶点,过右焦点的直线与椭圆相交于两点,当直线轴时,.(1)求椭圆的方程;(2)记,的面积分别为,求的取值范围;(3)若的重心在圆上,求直线的斜率.20.(12分)某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:间隔时间x/分101112131415等候人数y/人232526292831调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是中间4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”.(2)假设该起点站等候人数为24人,请你根据(1)中的结论预测车辆发车间隔多少时间合适?附:对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为21.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:22.(10分)已知椭圆的短轴长为2,左、右焦点分别为,,过且垂直于长轴的弦长为1(1)求椭圆C的标准方程;(2)若A,B为椭圆C上位于x轴同侧的两点,且,共线,求四边形的面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A2、C【解析】代入两直线垂直的公式,即可求解.【详解】因为两直线垂直,所以,解得:或.故选:C3、D【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系可得:命题“p:,”的否定式为“,”.故选:D.4、A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A5、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.6、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.7、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.8、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C9、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.10、A【解析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项11、A【解析】根据过定点的直线系求出恒过点可判断B,由点与圆的位置关系可判断A,由直线方程可判断CD.【详解】直线可化为,令,,解得,,所以直线恒过定点,而该定点在圆C:内部,所以必与该圆相交当时,直线方程为,故斜率为0,当时,直线方程为,故斜率为,倾斜角为135°.故选:A12、B【解析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果.【详解】初始值:,当时,,进入循环;当时,,进入循环;当时,,终止循环,输出的值为3.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.15、【解析】由题意可知为直角三角形,求出外接圆的半径,可求出球的半径,然后求球的表面积.【详解】由题意,,,,则,可知,所以外接圆的半径为,因为球心到平面的距离为,所以球的半径为:,所以球的表面积为:.故答案为:.16、【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图所示,化目标函数为,由图可知,当直线过点时,直线在y轴上的截距最大,z最大,联立方程组,解得点,则取得最大值为.故答案为:【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误作出可行域;二,画目标函数所对应直线时,要注意让其斜率与约束条件中的直线的斜率比较;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)根据题意以m表示出,由即可求出,进而求出;(2)根据等差数列和等比数列的通项公式求出,再利用错位相减法即可求出.【详解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,当时,,又,,满足,,,两式相减得,.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.18、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)根据(1)的结果,得到,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得,所以;(2)由(1)可得,,即数列为等比数列,所以数列的前n项和.19、(1)(2)(3)【解析】(1)根据已知条件得到,,即可得到椭圆的方程.(2)首先设直线为,与椭圆联立得到,根据得到的范围,从而得到的范围.(3)设重心,根据重心性质得到,,再代入求解即可.小问1详解】因为左顶点,所以,根据,可得,解得,所以;【小问2详解】设直线为,则,则,,那么,根据解得,所以.【小问3详解】设重心,则:,,所以,所以,即所求直线的斜率为.20、(1),是“恰当回归方程”;(2)10分钟较合适.【解析】(1)应用最小二乘法求出回归直线方程,再分别估计、时的值,结合“恰当回归方程”的定义判断是否为“恰当回归方程”.(2)根据(1)所得回归直线方程,将代入求x值即可.【小问1详解】中间4组数据是:间隔时间(分钟)11121314等候人数(人)25262928因为,所以,故,又,所以,当时,,而;当时,,而;所以所求的线性回归方程是“恰当回归方程”;【小问2详解】由(1)知:当时,,所以预测车辆发车间隔时间10分钟较合适.21、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分22、(1)(2)2【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)延长,交椭圆C于点.设出直线的方程并与椭圆方程联立,化简写出根与系数关系,根据对称性求得四边形的面积的表达式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 规范性文件审核工作制度
- 部门管理制度合规性规范
- 体检报告书写规范制度
- 企业用车制度规范标准
- 工厂叉车制度规范要求
- 菜籽油库存核查制度规范
- 企业辐射安全制度规范
- 车间现场规范化管理制度
- 老干部局规范化制度汇编
- 规范消防控制室管理制度
- GB/T 9948-2025石化和化工装置用无缝钢管
- 无人机UOM考试试题及答案
- D二聚体诊断肺动脉栓塞
- 湖南省永州市祁阳县2024-2025学年数学七年级第一学期期末联考试题含解析
- 中国大麻种植行业市场发展现状及投资前景展望报告
- 非常规油气藏超分子压裂液体系研发与性能评价
- 检验试剂冷库管理制度
- 运用PDCA提高全院感染性休克集束化治疗达标率
- 第1讲 数学建模简介课件
- 《临床生物化学检验》考试复习题库(含答案)
- DB36T-叶类蔬菜机械收获作业技术规程
评论
0/150
提交评论