云南省曲靖市西南名校联盟2026届高一数学第一学期期末达标检测模拟试题含解析_第1页
云南省曲靖市西南名校联盟2026届高一数学第一学期期末达标检测模拟试题含解析_第2页
云南省曲靖市西南名校联盟2026届高一数学第一学期期末达标检测模拟试题含解析_第3页
云南省曲靖市西南名校联盟2026届高一数学第一学期期末达标检测模拟试题含解析_第4页
云南省曲靖市西南名校联盟2026届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市西南名校联盟2026届高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.2.如图,已知水平放置的按斜二测画法得到的直观图为,若,,则的面积为()A.12 B.C.6 D.33.命题“,”的否定是()A., B.,C., D.,4.设函数的图象为,关于点A(2,1)的对称图象为,若直线y=b与有且仅有一个公共点,则b的值为A.0 B.-4C.0或4 D.0或-45.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个6.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是A.3 B.4C.5 D.77.圆与圆的位置关系为()A.相离 B.相交C.外切 D.内切8.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.9.已知集合则()A. B.C. D.10.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图像恒过定点,若点也在函数的图像上,则__________12.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____13.若正实数满足,则的最大值是________14.已知集合,,则集合中的元素个数为___________.15.已知,则的大小关系是___________________.(用“”连结)16.已知函数,,若对任意的,都存在,使得,则实数的取值范围为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围18.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.19.在①函数的图象向右平移个单位长度得到的图象,且图象关于原点对称;②向量,,,;③函数.在以上三个条件中任选一个,补充在下面问题中空格位置,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若,且,求的值;(2)求函数在上的单调递减区间.20.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面由扇形挖去扇形后构成的已知米,米,线段、线段与弧、弧的长度之和为米,圆心角为弧度(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值21.已知函数是定义域为的奇函数,当时,.(1)求出函数在上解析式;(2)若与有3个交点,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.2、C【解析】由直观图,确定原图形中线段长度和边关系后可求得面积【详解】由直观图,知,,,所以三角形面积为故选:C3、C【解析】利用全称量词的命题的否定解答即可.【详解】解:因为全称量词的命题的否定是存在量词的命题,命题“,”是全称量词的命题,所以其否定是“,”.故选:C4、C【解析】先设图像上任一点以及P关于点的对称点,根据点关于点对称的性质,用p的坐标表示的坐标,再把的坐标代入f(x)的解析式进行整理,求出图象的解析式,通过对解析式值域的分析,再结合直线y=b与有且仅有一个公共点,来确定未知量b的值。【详解】设图像上任一点,且P关于点的对称点,则有,解得,又点在函数的图像上,则有,那么图像的函数为,当时,,,当且仅当时取到等号,此时取到最小值4,直线y=b与只有一个公共点,故b=4,同理当时,,,即,此时取到最大值0,当且仅当x=3时取到等号,直线y=b与只有一个公共点,故b=0.综上,b的值为0或4.故选:C【点睛】利用基本不等式求出函数最值时,要注意函数定义域是否包含取等点,本题是一道函数综合题5、A【解析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A6、D【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是2,2.5,3,5,7,7.5,8,共计7个.故选D点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点.7、A【解析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系.【详解】圆,圆心,半径为;,圆心,半径为;两圆圆心距,所以相离.故选:A.8、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B9、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.10、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可.【详解】令可得,此时,据此可知点A的坐标为,点在函数的图像上,故,解得:,函数的解析式为,则.【点睛】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力.12、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题13、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.14、【解析】解不等式确定集合,解方程确定集合,再由交集定义求得交集后可得结论【详解】由题意,,∴,只有1个元素故答案为:115、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.16、##a≤【解析】时,,原问题.【详解】∵,,∴,∴,即对任意的,都存在,使恒成立,∴有.当时,显然不等式恒成立;当时,,解得;当时,,此时不成立.综上,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.18、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运算性质,结合恒等式的性质可得所求值;(2)运用对数运算性质及均值不等式即可得到结果;(3)先证明函数单调性,化抽象不等式为具体不等式,转求函数的最值即可.【小问1详解】因为为偶函数,所以,所以,所以,所以.【小问2详解】因为,所以(当且仅当时等号成立),所以最小值为.【小问3详解】,任取且,所以,因为且,所以,所以,所以,所以,所以在上为增函数,又因为为偶函数,所以,当时,,当时,,所以,设(当且仅当时,等号成立),因为,所以等号能成立,所以,所以,所以,综上,.19、(1)(2),【解析】(1)若选条件①,根据函数的周期性求出,再根据三角函数的平移变换规则及函数的对称性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件②,根据平面向量数量积的坐标表示及三角恒等变换化简函数解析式,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件③,利用两角和的正弦公式及二倍角公式、辅助角公式将函数化简,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;(2)根据正弦函数的性质求出函数的单调递减区间,再根据函数的定义域令和,即可求出函数在指定区间上的单调递减区间;【小问1详解】解:若选条件①:由题意可知,,,,,又函数图象关于原点对称,所以,,,,,,,,,,若选条件②:因,,,,所以又,,,,,;若选条件③:,又,,,,,;【小问2详解】解:由,,解得,,令,得,令,得,函数在上的单调递减区间为,20、(1).(2)当时,取最大值.【解析】(1)根据弧长公式和周长列方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论