版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市滕州市第一中学2026届高一数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,若,则的值为()A.8 B.2C. D.-22.已知函数的上单调递减,则的取值范围是()A. B.C. D.3.已知,则它们的大小关系是()A. B.C. D.4.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.5.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与6.直线与直线平行,则的值为()A. B.2C. D.07.函数与的图象可能是()A. B.C. D.8.命题“,”的否定为()A., B.,C, D.,9.若关于的不等式在恒成立,则实数的取值范围是()A. B.C. D.10.函数y=ax+1﹣1(a>0,a≠1)恒过的定点是()A.(1,﹣1) B.(0,0)C.(0,﹣1) D.(﹣1,0)二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x),若f(a)=4,则a=_____12.如果函数仅有一个零点,则实数的值为______13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________14.已知正实数满足,则当__________时,的最小值是__________15.函数在上存在零点,则实数a的取值范围是______16.若,则实数____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点.(1)当时,求的值;(2)设,求的取值范围.18.已知能表示成一个奇函数和一个偶函数的和.(1)请分别求出与的解析式;(2)记,请判断函数的奇偶性和单调性,并分别说明理由.(3)若存在,使得不等式能成立,请求出实数的取值范围.19.已知.(1)若,且,求的值.(2)若,求的值.20.已知A(2,0),B(0,2),,O为坐标原点(1),求sin2θ的值;(2)若,且θ∈(-π,0),求与的夹角21.已知函数(1)求f(x)的最小正周期及单调递减区间;(2)若f(x)在区间上的最小值为1,求m的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.2、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题3、B【解析】根据幂函数、指数函数性质判断大小关系.【详解】由,所以.故选:B4、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题5、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.6、B【解析】根据两直线平行的条件列式可得结果.【详解】当时,直线与直线垂直,不合题意;当时,因直线与直线平行,所以,解得.故选:B【点睛】易错点点睛:容易忽视纵截距不等这个条件导致错误.7、D【解析】注意到两函数图象与x轴的交点,由排除法可得.【详解】令,得或,则函数过原点,排除A;令,得,故函数,都过点,排除BC.故选:D8、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.9、A【解析】转化为当时,函数的图象不在的图象的上方,根据图象列式可解得结果.【详解】由题意知关于的不等式在恒成立,所以当时,函数的图象不在的图象的上方,由图可知,解得.故选:A【点睛】关键点点睛:利用函数的图象与函数的图象求解是解题关键.10、D【解析】由,可得当时,可求得函数y=ax+1﹣1(a>0,a≠1)所过定点.【详解】因为,所以当时有,,即当时,,则当时,,所以当时,恒有函数值.所以函数y=ax+1﹣1(a>0,a≠1)恒过的定点.故选:D【点睛】本题考查指数函数的图像性质,函数图像过定点,还可以由图像间的平移关系得到答案,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.12、【解析】利用即可得出.【详解】函数仅有一个零点,即方程只有1个根,,解得.故答案为:.13、【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为.故答案为:【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.14、①.②.6【解析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式后,结合二次函数的性质可知恰在时取得最小值,由此得解.【详解】解:由题意可知:,即,当且仅当“”时取等号,,当且仅当“”时取等号.故答案为:,6.【点睛】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.15、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题16、5##【解析】根据题中条件,由元素与集合之间的关系,得到求解,即可得出结果.【详解】因为,所以,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据三角函数的定义结合二倍角的正弦公式、诱导公式化简可得的值;(2)利用辅助角公式可得,结合角的取值范围可求得的取值范围.【小问1详解】解:由三角函数的定义,可得,当时,,即,,【小问2详解】解:,,,所以,,,则,则,即的取值范围为.18、(1);(2)见解析;(3).【解析】(1)由函数方程组可求与的解析式.(2)利用奇函数的定义和函数单调性定义可证明为奇函数且为上的增函数.(3)根据(2)中的结果可以得到在上有解,参变分离后利用换元法可求的取值范围.【详解】(1)由已知可得,则,由为奇函数和为偶函数,上式可化为,联合,解得.(2)由(1)得定义域,①由,可知为上的奇函数.②由,设,则,因为,故,,故即,故在上单调递增(3)由为上的奇函数,则等价于,又由在上单调递增,则上式等价于,即,记,令,可得,易得当时,即时,由题意知,,故所求实数的取值范围是.【点睛】本题考查与指数函数有关的复合函数的单调性和奇偶性以及函数不等式有解,前者根据定义进行判断,后者利用单调性和奇偶性可转化为常见不等式有解,本题综合性较高.19、(1)或(2)【解析】(1)诱导公式化简可得,结合,求解即可;(2)代入,结合诱导公式化简可得,即,利用二倍角公式化简可得,代入即得解【小问1详解】由题意,若,则或【小问2详解】若,则即,即故20、(1);(2)【解析】分析:(1)先根据向量数量积得sinθ+cosθ值,再平方得结果,(2)先根据向量的模得cosθ,即得C点坐标,再根据向量夹角公式求结果.详解:(1)∵=(cosθ,sinθ)-(2,0)=(cosθ-2,sinθ),=(cosθ,sinθ)-(0,2)=(cosθ,sinθ-2),=cosθ(cosθ-2)+sinθ(sinθ-2)=cos2θ-2cosθ+sin2θ-2sinθ=1-2(sinθ+cosθ)=-∴sinθ+cosθ=,∴1+2sinθcosθ=,∴sin2θ=-1=-.(2)∵=(2,0),=(cosθ,sinθ),∴+=(2+cosθ,sinθ),∵|+|=,所以4+4cosθ+cos2θ+sin2θ=7,∴4cosθ=2,即cosθ=.∵-π<θ<0,∴θ=-,又∵=(0,2),=,∴cos〈,〉=,∴〈,〉=.点睛:向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,通过解三角求得结果.21、(1).,
(2)【解析】(1)直接利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流配送路径优化中人工智能算法的应用与效率提升课题报告教学研究课题报告
- 大数据分析原理与实践
- 2026年某国企备考题库终端运维及电视电话会议保障人员招聘及完整答案详解1套
- 高中数学“问题链”教学策略对学生数学学习兴趣的激发研究教学研究课题报告
- 2025年乡村旅游厕所健康安全风险评估报告
- 2026年体育科技行业创新报告及未来五至十年运动科技报告
- 初中物理教学中实验操作与理论教学融合的研究教学研究课题报告
- 专业领域内个人素养保障承诺书(7篇)
- 小学语文智能教育机器人互动教学效果评估及优化策略教学研究课题报告
- 绿色发展之承诺书7篇
- 《中医六经辨证》课件
- 抖音直播违规考试题及答案
- T/CAEPI 34-2021固定床蜂窝状活性炭吸附浓缩装置技术要求
- 购销合同解除退款协议书
- 挂名合同协议书
- 2024年国家公务员考试国考中国人民银行结构化面试真题试题试卷及答案解析
- 商品混凝土实验室操作手册
- 装饰装修工程监理月报
- 标准商品房买卖合同文本大全
- LY/T 3408-2024林下经济术语
- 2019人教版高中物理必修第一册《第二章 匀变速直线运动的研究》大单元整体教学设计2020课标
评论
0/150
提交评论