版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州一中、临汾一中、精英中学、鄂尔多斯一中2026届高二数学第一学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A. B.C. D.2.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.83.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.4.已知直线与直线垂直,则()A. B.C. D.35.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.6.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照,,…,分成9组,制成了如图所示的频率分布直方图.规定成绩低于13秒为优,成绩高于14.8秒为不达标.由直方图推断,下列选项错误的是()A.直方图中a的值为0.40B.由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C.由直方图估计本校高三男生100米体能测试成绩为优的人数为54D.由直方图估计本校高三男生100米体能测试成绩为不达标的人数为187.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.8.已知,,则在上的投影向量为()A.1 B.C. D.9.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A B.2C. D.10.若,则x的值为()A.4 B.6C.4或6 D.811.下列各式正确的是()A. B.C. D.12.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点与的右焦点重合,则__________.14.必然事件的概率是________.15.抛物线的焦点坐标为_____.16.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值18.(12分)已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.19.(12分)已知圆与(1)过点作直线与圆相切,求的方程;(2)若圆与圆相交于、两点,求的长20.(12分)设是首项为的等差数列的前项和,是首项为1的等比数列的前项和,为数列的前项和,为数列的前项和,已知.(1)若,求;(2)若,求.21.(12分)一项“过关游戏”规则规定:在第关要抛掷一颗正六面体骰子次,每次掷得的点数均相互独立,如果这次抛掷所出现的点数之和大于,则算过关.(1)这个游戏最多过几关?(2)某人连过前两关的概率是?(3)某人连过前三关的概率是?22.(10分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.2、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B3、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.4、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.5、D【解析】根据题意和直线的点方向式方程即可得出结果.【详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D6、D【解析】根据频率之和为求得,结合众数、频率等知识对选项进行分析,从而确定正确答案.【详解】,解得,A选项正确.众数为,B选项正确.成绩低于秒的频率为,人数为,所以C选项正确.成绩高于的频率为,人数为人,D选项错误.故选:D7、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质8、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C9、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.10、C【解析】根据组合数的性质可求解.【详解】,或,即或.故选:C11、C【解析】利用导数的四则运算即可求解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误;故选:C12、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出抛物线的焦点坐标即为的右焦点可得答案.【详解】由题意可知:抛物线的焦点坐标为,由题意知表示焦点在轴的椭圆,在椭圆中:,所以,因为,所以.故答案为:.14、1【解析】直接由必然事件的定义求解【详解】因为必然事件是一定要发生的,所以必然事件的概率是1,故答案为:115、【解析】根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点坐标.解:抛物线方程中p=2,∴抛物线焦点坐标为(-1,0)故填写考点:抛物线的简单性质点评:本题主要考查了抛物线的简单性质.属基础题16、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.18、(1)(2)或【解析】(1)设曲线上的任意一点,由题意可得,化简即可得出(2)分直线的斜率不存在与存在两种情况讨论,当斜率不存在时,即可求出、的坐标,从而求出,当直线的斜率存在,设直线方程为,,,联立直线与圆的方程,消元列出韦达定理,则,即可求出,从而求出直线方程,由圆心在直线上,即可求出弦长;【小问1详解】解:(1)设曲线上的任意一点,由题意可得:,即,整理得【小问2详解】解:依题意当直线的斜率不存在时,直线方程为,则,则或,即、,所以、,所以满足条件,此时,当直线的斜率存在,设直线方程为,,,则,消去整理得,由,解得或,所以、,因为,,所以,解得,所以直线方程为,又直线过圆心,所以,综上可得或;19、(1)或(2)【解析】(1)根据已知可得圆心与半径,再利用几何法可得切线方程;(2)联立两圆方程可得公共弦方程,进而可得弦长.【小问1详解】解:圆的方程可化为:,即:圆的圆心为,半径为若直线的斜率不存在,方程为:,与圆相切,满足条件若直线的斜率存在,设斜率为,方程为:,即:由与圆相切可得:,解得:所以的方程为:,即:综上可得的方程为:或【小问2详解】联立两圆方程得:,消去二次项得所在直线的方程:,圆的圆心到的距离,所以.20、(1)或(2)【解析】(1)列方程组解得等差数列的公差,即可求得其前项和;(2)列方程组解得等差数列的公差和等比数列的公比,以错位相减法即可求得数列的前项和.【小问1详解】设的公差为,的公比为,则,,因为即,解之得或,又因为,得所以或,故,或【小问2详解】因为,所以,所以由解得(舍去)或,于是得,所以,因为,(1)所以,(2)所以由(1)(2)得:故21、(1)关(2)(3)【解析】(1)由题意,可判断时,,当,所以可判断出最多只能过关;(2)记一次抛掷所出现的点数之和大于为事件,两次抛掷所出现的点数之和大于为事件,得基本事件的总数以及满足题意的基本事件的个数,计算出,,从而根据概率相乘求解得连过前两关的概率;(3)设前两次和为,第三次点数为,列出第三关过关的基本事件的个数,利用概率相乘即可得连过前三关的概率.【小问1详解】因为骰子出现的点数最大为,当时,,而,所以时,这次抛掷所出现的点数之和均小于,所以最多只能过关.【小问2详解】记一次抛掷所出现的点数之和大于为事件,基本事件总数为个,符合题意的点数为,共个,所以;记两次抛掷所出现的点数之和大于为事件,基本事件总数为个,不符合题意的点数为,共个,则由对立事件的概率得,所以连过前两关的概率为;【小问3详解】前两次和为,第三次点数为则考虑再考虑2种3种4种5种6种5种4种3种2种1种所以满足共有因此某人连过前三关的概率是.22、(1)单调递增区间为,单调递减区间为;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年朱老庄镇人民调解员招聘备考题库有答案详解
- 安全生产培训文档及课件
- 2026年青岛市人力资源集团有限公司司法辅助岗招聘备考题库及完整答案详解一套
- 金融保险风险管理机制研究
- 2025年通信基站选址与规划指南
- 美容美发行业客户关系管理指南
- 2025年品牌管理与服务规范手册
- 2025年网络信息安全教育与培训指南
- 高中生运用GIS技术研究郑和船队航海路线选择的军事地理因素课题报告教学研究课题报告
- 2025年旅游景区环境卫生管理指南
- 汽轮机本体知识讲解
- 2021年云南公务员考试行测试题及答案
- 如何撰写优秀的历史教学设计
- GB/Z 42217-2022医疗器械用于医疗器械质量体系软件的确认
- 中医学基础脏腑经络详解演示文稿
- JJF(苏)211-2018 倒角卡尺、倒角量表校准规范-(现行有效)
- 餐饮垃圾处理
- 安全技术交底情况监理核查记录表
- 施工电梯通道方案
- 毕业设计论文晋华宫矿340万吨新井通风设计含全套CAD图纸
- 阀门基础知识下.
评论
0/150
提交评论