广东省茂名市电白县第一中学2026届高二上数学期末学业水平测试试题含解析_第1页
广东省茂名市电白县第一中学2026届高二上数学期末学业水平测试试题含解析_第2页
广东省茂名市电白县第一中学2026届高二上数学期末学业水平测试试题含解析_第3页
广东省茂名市电白县第一中学2026届高二上数学期末学业水平测试试题含解析_第4页
广东省茂名市电白县第一中学2026届高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省茂名市电白县第一中学2026届高二上数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,圆C2:x2+y2-x-4y+7=0,则“a=1”是“两圆内切”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.如图在中,,,在内作射线与边交于点,则使得的概率是()A. B.C. D.3.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺4.已知递增等比数列的前n项和为,,且,则与的关系是()A. B.C. D.5.已知关于的不等式的解集是,则的值是()A B.5C. D.76.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当抽取的一般员工人数为()A.100 B.15C.80 D.507.数列中,满足,,设,则()A. B.C. D.8.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列9.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为()A.海里 B.海里C.海里 D.海里10.若直线与平行,则实数m等于()A.1 B.C.4 D.011.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.612.已知,则a,b,c的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.写出直线一个方向向量______14.函数的单调递减区间是___________.15.数列的前项和为,则_________________.16.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的方程为,点,过点的直线交抛物线于两点(1)求△OAB面积的最小值(为坐标原点);(2)是否为定值?若是,求出该定值;若不是,说明理由18.(12分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.19.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.20.(12分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:21.(12分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.22.(10分)双曲线(,)的离心率,且过点.(1)求a,b的值;(2)求与双曲线C有相同渐近线,且过点的双曲线的标准方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先得出圆的圆心和半径,求出两圆心间的距离,半径之差,根据两圆内切得出方程,从而得出答案.【详解】圆的圆心半径的圆心半径两圆心之间的距离为两圆的半径之差为当两圆内切时,,解得或所以当,可得两圆内切,当两圆内切时,不能得出(可能)故“”是“两圆内切”的充分不必要条件故选:B2、C【解析】由题意可得,根据三角形中“大边对大角,小边对小角”的性质,将转化为求的概率,又因为,,从而可得的概率【详解】解:在中,,,所以,即,要使得,则,又因为,,则的概率是故选:C【点睛】本题考查几何概型及其计算方法的知识,属于基础题3、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A4、D【解析】设等比数列的公比为,由已知列式求得,再由等比数列的通项公式与前项和求解.【详解】设等比数列的公比为,由,得,所以,又,所以,所以,,所以即故选:D5、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D6、C【解析】按照比例关系,分层抽取.【详解】由题意可知,所以应当抽取的一般员工人数为.故选:C7、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力8、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B9、A【解析】利用正弦定理可求解.【详解】设甲驱逐舰、乙护卫舰、航母所在位置分别为A,B,C,则,,.在△ABC中,由正弦定理得,即,解得,即甲驱逐舰与乙护卫舰的距离为海里故选:A10、B【解析】两直线平行的充要条件【详解】由于,则,.故选:B11、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B12、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】本题可先将直线的一般式化为斜截式,然后根据斜率即可得到直线的一个方向向量.【详解】由题意可知,直线可以化为,所以直线的斜率为,直线的一个方向向量可以写为.故答案为:.14、【解析】首先对求导,可得,令,解可得答案【详解】解:由得,故的单调递减区间是故答案为:【点睛】本题考查利用导数研究函数的单调性,属于基础题.15、【解析】利用计算可得出数列的通项公式.【详解】当时,;而不适合上式,.故答案:.16、【解析】由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)是,该定值.【解析】(1)根据弦长公式、点到直线距离公式,结合三角形面积公式进行求解即可;(2)根据两点间距离公式,结合一元二次方程根与系数的关系进行求解即可.【小问1详解】显然直线存在斜率,设直线的方程为:,所以有,设,则有,,原点到直线的距离为:,△OAB的面积为:,当时,有最小值,最小值为;【小问2详解】是定值,理由如下:由(1)可知:,,【点睛】关键点睛:利用一元二次方程根与系数关系是解题的关键.18、(1)(2),或【解析】(1)由椭圆的性质可知:,解得a和c的值,即可求得椭圆C的标准方程;(2)将直线方程代入椭圆方程,由韦达定理求得:,,λ,根据向量的坐标坐标,(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得实数m的取值范围【详解】(1)由已知,解得,所以,所以椭圆的标准方程为.(2)由已知,设,联立方程组,消得,由韦达定理得①②因为,所以,所以③,将③代入①②,,消去得,所以.因为,所以,即,解得,所以,或.【点睛】本题考查椭圆的标准方程及简单性质,直线与椭圆的位置关系,韦达定理,向量的坐标表示,不等式的解法,考查计算能力,属于中档题19、(1)的单调递增区间为,,单调递减区间为,(2)【解析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当f(1)≤1f(-1)≤1即在上恒成立所以,因此满足条件的的取值范围是20、(1);(2)证明见解析【解析】(1)由可求出,结合离心率可知,进而可求出,即可求出标准方程.(2)由题意知,,则由直线的点斜式方程可得直线的解析式为,与椭圆进行联立,设,,结合韦达定理可得,从而由斜率的计算公式对进行整理化简从而可证明.【详解】(1)解:因为,所以.又因为离心率,所以,则,所以椭圆的标准方程是(2)证明:由题意知,,,则直线的解析式为,代入椭圆方程,得设,,则.又因为,,所以【点睛】关键点睛:本题第二问的关键是联立直线和椭圆的方程后,结合韦达定理,用表示交点横坐标的和与积,从而代入进行整理化简.21、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单调性和零点,得到答案.【详解】解:(1)函数定义域是,,当时,,函数在单调递增,无减区间;当时,令,得到,即,所以,,单调递增,,,单调递减,综上所述,时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2)由已知在恒成立,令,,可得,则,所以在递增,所以,①当时,,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论