版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省石家庄市普通高中高二上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-82.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.3.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.44.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.5.已知抛物线y2=4x的焦点为F,定点,M为抛物线上一点,则|MA|+|MF|的最小值为()A.3 B.4C.5 D.66.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.7.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.8.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段9.已知全集,,()A. B.C. D.10.已知命题:,命题:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件12.已知a,b为正数,,则下列不等式一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正三棱柱中,,点P满足,其中,,则下列说法中,正确的有_________(请填入所有正确说法的序号)①当时,的周长为定值②当时,三棱锥的体积为定值③当时,有且仅有一个点P,使得④当时,有且仅有一个点P,使得平面14.若某几何体的三视图如图所示,则该几何体的体积是__________15.方程()所表示的直线恒过定点________16.已知两点和则以为直径的圆的标准方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是递增的等比数列,满足,(1)求数列的通项公式;(2)若,求数列的前n项和18.(12分)如图,在长方体中,,点E在棱上运动(1)证明:;(2)当E为棱的中点时,求直线与平面所成角的正弦值;(3)等于何值时,二面角的大小为?19.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率20.(12分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由21.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程22.(10分)如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A2、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.3、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A4、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.5、B【解析】作出图象,过点M作准线的垂线,垂足为H,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,求解即可【详解】过点M作准线的垂线,垂足为H,由抛物线的定义可知|MF|=|MH|,则问题转化为|MA|+|MH|的最小值,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,其最小值为.故选:B6、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.7、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.8、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.9、C【解析】根据条件可得,则,结合条件即可得答案.【详解】因,所以,则,又,所以,即.故选:C10、B【解析】利用充分条件和必要条件的定义判断.【详解】因为命题:或,命题:,所以是的必要不充分条件,故选:B11、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.12、A【解析】构造新函数,以函数单调性把不等式转化为整式不等式即可解决.【详解】不等式可化为:令,则则函数为单调增函数.由可得故选:A二、填空题:本题共4小题,每小题5分,共20分。13、②④【解析】①结合得到P在线段上,结合图形可知不同位置下周长不同;②由线面平行得到点到平面距离不变,故体积为定值;③结合图形得到不同位置下有,判断出③错误;④结合图形得到有唯一的点P,使得线面垂直.【详解】由题意得:,,,所以P为正方形内一点,①,当时,,即,,所以P在线段上,所以周长为,如图1所示,当点P在处时,,故①错误;②,如图2,当时,即,即,,所以P在上,,因为∥BC,平面,平面,所以点P到平面距离不变,即h不变,故②正确;③,当时,即,如图3,M为中点,N为BC的中点,P是MN上一动点,易知当时,点P与点N重合时,由于△ABC为等边三角形,N为BC中点,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因为平面,则,当时,点P与点M重合时,可证明出⊥平面,而平面,则,即,故③错误;④,当时,即,如图4所示,D为的中点,E为的中点,则P为DE上一动点,易知,若平面,只需即可,取的中点F,连接,又因为平面,所以,若,只需平面,即即可,如图5,易知当且仅当点P与点E重合时,故只有一个点P符合要求,使得平面,故④正确.故选:②④【点睛】立体几何的压轴题,通常情况下要画出图形,利用线面平行,线面垂直及特殊点,特殊值进行排除选项,或者用等体积法进行转化等思路进行解决.14、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:115、【解析】将方程化为,令得系数等于0,即可得到答案.【详解】方程可化为,由,得,所以方程()所表示的直线恒过定点.故答案为:.【点睛】本题考查了直线恒过定点问题,属于基础题.16、【解析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,故所求圆的半径为,则所求圆的标准方程是:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等比数列的通项公式计算基本量从而得出的通项公式;(2)由(1)可得,再由裂项相消法求和即可.【小问1详解】设等比数列的公比为q,所以有,,联立两式解得或又因为数列是递增的等比数列,所以,所以数列的通项公式为;【小问2详解】∵,∴,∴18、(1)证明见解析;(2);(3).【解析】(1)连接、,长方体、线面垂直的性质有、,再根据线面垂直的判定、性质即可证结论.(2)连接,由已知条件及勾股定理可得、,即可求、,等体积法求到面的距离,又直线与面所成角即为与面所成角,即可求线面角的正弦值.(3)由题设易知二面角为,过作于,连接,可得二面角平面角为,令,由长方体的性质及勾股定理构造方程求即可.【小问1详解】由题设,连接、,又长方体中,∴为正方形,即,又面,面,即,∵,面,∴面,而面,即.【小问2详解】连接,由E为棱的中点,则,∴,又,故,∴,又,,故,则,由,若到面的距离为,又,,∴,可得,又,∴直线与面所成角即为与面所成角为,故.【小问3详解】二面角大小为,即二面角为,由长方体性质知:面,面,则,过作于,连接,又,∴面,则二面角平面角为,∴,令,则,故,而,,∴,∴,整理得,解得.∴时,二面角的大小为.19、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为20、(1)(2)存在,点为线段的靠近点的三等分点【解析】(1)根据题意证得平面,进而证得平面,得到平面,以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,求得平面和平面的法向量,结合向量的夹角公式,即可求解;(2)设点,求得平面的法向量为,结合向量的距离公式列出方程,求得的值,即可得到答案.【小问1详解】解:因为四边形为正方形,则,,由,,,所以平面,因为平面,所以,又由,,,所以平面,又因为平面,所以,因为且平面,所以平面,由平面,且,不妨以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,如图所示,则,,,,可得,,,设平面的法向量为,则,取,可得,所以,易得平面的法向量为,则,由平面与平面夹角为锐角,所以平面与平面夹角的余弦值【小问2详解】解:设点,可得,,设平面的法向量为,则,取,可得,所以,所以点到平面的距离为,解得,即或因为,所以故当点为线段的靠近点的三等分点时,点到平面的距离为.21、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 搬运工工作制度
- 2026年智能车载氛围灯项目投资计划书
- 中学教师教学基本要求制度
- 2026年自助点餐终端项目可行性研究报告
- 2026年智能排风扇项目项目建议书
- 未来五年竹癸柳条篮企业ESG实践与创新战略分析研究报告
- 未来五年棕榈藤种子企业县域市场拓展与下沉战略分析研究报告
- 未来五年曲柳原木企业ESG实践与创新战略分析研究报告
- 未来五年果膏企业数字化转型与智慧升级战略分析研究报告
- 未来五年农林牧渔业物联网技术和应用企业数字化转型与智慧升级战略分析研究报告
- 医院物业保洁服务方案(技术方案)
- 《设备买卖合同模板》
- GB/T 4074.6-2024绕组线试验方法第6部分:热性能
- DB32-T 4111-2021 预应力混凝土实心方桩基础技术规程
- 不同时代的流行音乐
- 医疗卫生机构6S常态化管理打分表
- 几种常用潜流人工湿地剖面图
- vpap iv st说明总体操作界面
- 2023人事年度工作计划七篇
- LY/T 1692-2007转基因森林植物及其产品安全性评价技术规程
- 蜂窝煤成型机课程设计说明书
评论
0/150
提交评论