江苏省新沂市第一学校2026届高一上数学期末经典试题含解析_第1页
江苏省新沂市第一学校2026届高一上数学期末经典试题含解析_第2页
江苏省新沂市第一学校2026届高一上数学期末经典试题含解析_第3页
江苏省新沂市第一学校2026届高一上数学期末经典试题含解析_第4页
江苏省新沂市第一学校2026届高一上数学期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省新沂市第一学校2026届高一上数学期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.2.已知直线与圆交于A,两点,则()A.1 B.C. D.3.函数是()A.奇函数,且上单调递增 B.奇函数,且在上单调递减C.偶函数,且在上单调递增 D.偶函数,且在上单调递减4.函数的部分图象如图,则()A. B.C. D.5.设,则a,b,c的大小关系是A. B.C. D.6.设,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.已知向量,满足,,且与的夹角为,则()A. B.C. D.8.函数的零点所在区间是()A. B.C. D.9.已知,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知集合,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的零点依次为a,b,c,则=________12.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______13.某高校甲、乙、丙、丁4个专业分别有150,150,400,300名学生.为了了解学生的就业倾向,用分层随机抽样的方法从这4个专业的学生中抽取40名学生进行调查,应在丁专业中抽取的学生人数为______14.若函数(,且)的图象经过点,则___________.15.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)16.已知为角终边上一点,且,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知,分别是正方体的棱,的中点.求证:平面平面.18.已知函数(1)若不等式的解集为,求的值;(2)当时,求关于的不等式的解集19.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.20.设全集,集合,(1)当时,求;(2)若,求实数的取值范围21.设函数.(1)若函数的图象C过点,直线与图象C交于A,B两点,且,求a,b;(2)当,时,根据定义证明函数在区间上单调递增.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,求得,得到是奇函数,再令,证得在上递减判断.【详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C2、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C3、A【解析】根据函数奇偶性和单调性的定义判定函数的性质即可.【详解】解:根据题意,函数,有,所以是奇函数,选项C,D错误;设,则有,又由,则,,则,则在上单调递增,选项A正确,选项B错误.故选:A.4、C【解析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【点睛】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.5、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.6、C【解析】根据一元二次不等式的解法,结合充分性、必要性的定义进行判断即可.【详解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分条件,故选:C7、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.8、B【解析】判断函数的单调性,根据函数零点存在性定理即可判断.【详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.9、A【解析】说明由可得得到,通过特例说明无法从得到,从而得到是的充分不必要条件.【详解】由,可得,由,即,,解得或.于是,由能推出,反之不成立.所以是充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.10、A【解析】由得,所以;由得,所以.所以.选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:12、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题13、12【解析】利用分层抽样的性质直接求解详解】由题意应从丁专业抽取的学生人数为:故答案为:1214、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.15、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.16、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】取的中点,连接、,则,进一步得到四边形为平行四边形,同理得到四边形为平行四边形,结合线面平行的判定即可得到结果.【详解】证明:取的中点,连接、.因为、分别为、的中点,.四边形为平行四边形..、分别为、的中点,∴,∴四边形为平行四边形,∴,∴.∵平面,平面,平面又,平面平面.【点睛】本题主要考查面面平行的判定,属于基础题型.18、(1);(2)见解析.【解析】(1)根据二次不等式解集与二次函数图像的关系即可求出a的取值;(2)根据二次函数图像的性质即可分类讨论解不等式.【小问1详解】不等式即,可化为因为的解集是,所以且解得;【小问2详解】不等式即,因为,所以不等式可化为当时,即,原不等式的解集当时,即,原不等式的解集为当时即原不等式的解集.综上所述,当时,原不等式的解;当时,原不等式的解集为;当时,原不等式的解集.19、(1)(2)增函数,证明见解析【解析】(1)根据,由求解;(2)利用单调性的定义证明.【小问1详解】解:∵,且,∴,∴;【小问2详解】函数在上是增函数.任取,不妨设,则,,∵且,∴,,,∴,即,∴在上是增函数.20、(1)或;(2)【解析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据,分和两种情况求解.【详解】(1)当时,或,或.(2),若,则当时,,不成立,解得,的取值范围是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论