版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省武威市河西成功学校高二上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切2.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.23.方程表示的曲线经过的一点是()A. B.C. D.4.已知函数,则()A.3 B.C. D.5.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.56.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.7.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.48.函数的大致图象是()A. B.C. D.9.已知双曲线上点到点的距离为15,则点到点的距离为()A.9 B.6C.6或36 D.9或2110.在四面体中,空间的一点满足,若共面,则()A. B.C. D.11.已知两个向量,,且,则的值为()A.1 B.2C.4 D.812.甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线的方程是,给出下列四个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线有4条对称轴;③曲线上任意一点到原点的距离都不小于1;④曲线所围成图形的面积大于4;其中,所有正确结论的序号是_____14.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________15.如图,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈,〉=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________16.设函数的导数为,且,则___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且,是的中点(1)求证:平面;(2)求异面直线与所成的角的余弦值18.(12分)已知等比数列满足,(1)求数列通项公式;(2)记,求数列的前n项和19.(12分)已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过,,三点,求椭圆E的标准方程20.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域21.(12分)如图,在四棱锥中,底面是矩形,,,,,为的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.22.(10分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,E为PD的中点.(1)证明:PB∥面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求点A到平面PBC的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C2、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.3、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C4、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B5、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B7、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A8、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.9、D【解析】利用双曲线的定义可得答案.【详解】设,,,为双曲线的焦点,则由双曲线定义,知,而所以或21故选:D.10、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.11、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.12、D【解析】利用相互独立事件概率乘法公式直接求解.【详解】甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、②③④【解析】根据曲线方程作出曲线,即可根据题意判断各结论的真假【详解】曲线的简图如下:根据图象以及方程可知,曲线C恰好经过9个整点,它们是,,,所以①不正确;由图可知,曲线有4条对称轴,它们分别是轴,轴,直线和,②正确;由图可知,曲线上任意一点到原点的距离都不小于1,③正确;由图可知,曲线所围成图形的面积等于,④正确故答案为:②③④14、9【解析】阅读茎叶图,由甲组数据的中位数为可得,乙组的平均数:,解得:,则:点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据15、(1,1,1)【解析】设PD=a,则D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐标为(1,1,1)16、【解析】,而,所以,,故填:.考点:导数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设为中点,连接,,证明四边形为平行四边形即可;(2)确定异面直线与所成的角为,计算三角形各边长,根据余弦定理计算得到答案.【小问1详解】设为中点,连接,,∵为中点,是的中点,,,故,且,故,且,∴四边形为平行四边形,∴,平面,平面,故平面.【小问2详解】∵,故异面直线与所成的角为,在中:,,.根据余弦定理:,所以异面直线与所成的角的余弦值为.18、(1)(2)【解析】(1)通过基本量列方程组可得;(2)由裂项相消法可解【小问1详解】由题意得解得,所以数列的通项公式为【小问2详解】由(1)知,则所以19、【解析】分椭圆的焦点在轴上与焦点在轴上,两种情况讨论,利用待定系数法求出椭圆方程;【详解】解:(1)当椭圆的焦点在轴上时,设其方程为(),则又点C在椭圆上,得,解得,所以椭圆E的方程为(2)当椭圆的焦点在轴上时,设其方程为(),则又点C在椭圆上,得,解得,这与矛盾综上可知,椭圆的方程为20、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以(或由,可得),又当时,,所以函数在区间上的值域为【点睛】确定函数单调区间的步骤:第一步,确定函数的定义域;第二步,求;第三步,解不等式,解集在定义域内的部分为单调递增区间;解不等式,解集在定义域内的部分为单调递减区间21、(1)证明见解析;(2).【解析】(1)由可得,再结合和线面垂直的判定定理可得平面,则,再由可得平面.(2)以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示,利用空间向量求解即可【详解】(1)证明:∵为矩形,且,∴.又∵,.∴,.又∵,,∴平面.∵平面,∴又∵,,∴平面.(2)解:以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示:则,,,,,∴,,设平面法向量则,即∴,∴∴直线与所成角的正弦值为.22、(1)证明见解析;(2).【解析】(1)设BD交AC于点O,连结EO,根据三角形中位线证明BP∥EO即可;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年零售企业物流配送管理规范
- 2025年数字货币跨境结算合规趋势研究报告
- 雨中的感动写一件令人印象深刻的小事(9篇)
- 以环保为中心的读后感13篇
- 2025年残疾人服务规范与操作指南
- 企业社会责任落实与考核承诺函(8篇)
- 小朋友们课间趣事记事作文15篇
- 文档管理标准化工具-文件分类与归档指南
- 学习英语的历程记事作文(15篇)
- 2025中远海运财产保险自保有限公司招聘1人笔试历年参考题库附带答案详解
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及完整答案详解1套
- 2026年杨凌职业技术学院单招职业技能考试题库含答案详解
- 2025云南昆明元朔建设发展有限公司第二批收费员招聘9人笔试考试参考题库及答案解析
- 国开本科《国际法》期末真题及答案2025年
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及完整答案详解1套
- 2026年中考作文备考之10篇高分考场范文
- 【《吸尘器造型结构设计(附图)》11000字】
- 2025年自考专业(学前教育)真题附完整答案
- 提高约束带使用规范率
- 比亚迪维修试车协议书
- 沈阳市行道树栽植现状分析与发展对策
评论
0/150
提交评论