近五年山西中考数学真题及答案2025_第1页
近五年山西中考数学真题及答案2025_第2页
近五年山西中考数学真题及答案2025_第3页
近五年山西中考数学真题及答案2025_第4页
近五年山西中考数学真题及答案2025_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年山西中考数学试题及答案第I卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列各数中比小的数是(

)A. B. C. D.2.科技创新型企业的不断涌现,促进了我国新质生产力的快速发展.以下四个科技创新型企业的品牌图标中,为中心对称图形的是(

)A. B. C. D.3.下列运算正确的是(

)A. B.C. D.4.如图,小谊将两根长度不等的木条的中点连在一起,记中点为,即.测得两点之间的距离后,利用全等三角形的性质,可得花瓶内壁上两点之间的距离.图中与全等的依据是(

)A. B. C. D.5.不等式组的解集是(

)A. B. C. D.无解6.如图,在平行四边形中,点是对角线的中点,点是边的中点,连接.下列两条线段的数量关系中一定成立的是(

)A. B.C. D.7.下表记录了某市连续五天的日最高气温和日最低气温.比较这五天的日最高气温与日最低气温的波动情况,下列说法正确的是(

)日期气温2月2日2月3日2月4日2月5日2月6日最高1261098最低102A.日最高气温的波动大 B.日最低气温的波动大C.一样大 D.无法比较8.如图,为的直径,点是上位于异侧的两点,连接.若,则的度数为(

)A. B. C. D.9.氢气是一种绿色清洁能源,可通过电解水获得.实践小组通过实验发现,在电解水的过程中,生成物氢气的质量与分解的水的质量满足我们学过的某种函数关系.下表是一组实验数据,根据表中数据,与之间的函数关系式为(

)水的质量氢气的质量A. B. C. D.10.如图,在中,,分别以点为圆心、的长为半径画弧,与的延长线分别交于点.若,则图中阴影部分的面积为(

)A. B. C. D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.因式分解:.12.近年来,我省依托乡村e镇建设,打造农村电商新产业,提高了农民收入.某农户通过网上销售传统手工艺品布老虎,利润由原来的每个20元增加到80元.该农户通过网上售出a个布老虎,则他的利润增加了元(用含a的代数式表示).13.如图,在平面直角坐标系中,点的坐标为,将线段绕点逆时针旋转,则点对应点的坐标为.14.如图是创新小组设计的一款小程序的界面示意图,程序规则为:每点击一次按钮,“”就从一个格子向左或向右随机移动到相邻的一个格子.当“”位于格子A时,小明连续点击两次按钮,“”回到格子A的概率是.15.如图,在四边形中,,,,,点在边上,,连接,且.点在的延长线上,连接若,则线段的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:

(2)解方程组:17.如图,在平面直角坐标系中,直线分别与x轴,y轴交于点A,B,与反比例函数的图象交于点C.已知点A的坐标为,点C的坐标为,点D在反比例函数的图像上,纵坐标为2.(1)求反比例函数的表达式,并直接写出点B的坐标;(2)连接,请直接写出四边形的面积.18.近年来,交通工具的多样化和普及化,为家长接送孩子带来便利的同时,也在一定程度上造成了放学时段校门口的交通拥堵.为了解具体情况,某校爱心社团中午放学后在校门口随机选取300名接送孩子的家长,针对接送孩子的方式和时段进行了问卷调查(调查问卷如图),所有问卷全部收回且有效,并将调查结果绘制成了如下所示的扇形统计图和条形统计图(不完整).

请认真阅读上述信息,回答下列问题:(1)扇形统计图中“公共交通”所在扇形的圆心角度数为_________;本次调查的家长中骑电动自行车接送孩子的有__________人,并补全条形统计图;(2)若该校共有1500名家长中午放学后接送孩子,请估计用私家车接送孩子的家长人数;(3)假如你是爱心社团的成员,请根据上述统计图中的信息,写出一个造成放学后校门口交通拥堵的原因,并给家长提出一条缓解拥堵的建议.19.我国自主研发的型快速换轨车,采用先进的自动化技术、能精准高效地完成更换铁路钢轨的任务.一辆该型号快速换轨车每小时更换钢轨的公里数是一个工作队人工更换钢轨的2倍,它更换116公里钢轨比一个工作队人工更换80公里钢轨所用时间少22小时.求一辆该型号快速换轨车每小时更换钢轨多少公里.20.项目学习项目背景:“源池泉涌”为我省某景区的一个景点,主体设计包括外栏墙与内栏墙,外栏墙高于内栏墙,两栏中间为步道,内栏墙内为泉池,池内泉水清澈见底.从正上方看,外栏墙呈正八边形,内栏墙呈圆形.综合实践小组的同学围绕“景物的测量与计算”开展项目学习活动,形成了如下活动报告.项目主题景物的测量与计算驱动问题如何测量内栏墙围成泉池的直径活动内容利用视图、三角函数等有关知识进行测量与计算活动过程方案说明图为该景,点俯视图的示意图,点,是正八边形中一组平行边的中点,为圆的直径图中点在同一条直线上.图为测量方案示意图,直径所在水平直线与外栏墙分别交于,点,,外栏墙与均与水平地面垂直,且.,均表示步道的宽,.图中各点都在同一竖直平面内.数据测量在点处测得,点和点的俯角分别为,,米.图中墙的厚度均忽略不计计算……交流展示……请根据上述数据,计算内栏墙围成泉池的直径的长(结果精确到米.参考数据:,,,,,).21.阅读与思考下面是小宣同学数学笔记中的部分内容,请认真阅读并完成相应的任务.双关联线段【概念理解】如果两条线段所在直线形成的夹角中有一个角是,且这两条线段相等,则称其中一条线段是另一条线段的双关联线段,也称这两条线段互为双关联线段.例如,下列各图中的线段与所在直线形成的夹角中有一个角是,若,则下列各图中的线段都是相应线段的双关联线段.

【问题解决】问题1:如图,在矩形中,,若对角线与互为双关联线段,则________.

问题2:如图,在等边中,点D,E分别在边的延长线上,且,连接.

求证:线段是线段的双关联线段.证明:延长交于点F.是等边三角形,.,(依据).,,;…

任务:(1)问题1中的________,问题2中的依据是________________;(2)补全问题2的证明过程;(3)如图,点C在线段上,请在图3中作线段的双关联线段.(要求:①尺规作图,保留作图痕迹,不写作法;②作出一条即可).22.综合与实践问题情境:青蛙腾空阶段的运动路线可看作抛物线.我国某科研团队根据青蛙的生物特征和运动机理设计出了仿青蛙机器人,其起跳后的运动路线与实际情况中青蛙腾空阶段的运动路线相吻合.实验数据:仿青蛙机器人从水平地面起跳,并落在水平地面上,其运动路线的最高点距地面,起跳点与落地点的距离为.数学建模:如图,将仿青蛙机器人的运动路线抽象为抛物线,其顶点为N,对称轴为直线l,仿青蛙机器人在水平地面上的起跳点为O,落地点为M.以O为原点,所在直线为x轴,过点O与所在水平地面垂直的直线为y轴,建立平面直角坐标系.(1)请直接写出顶点N的坐标,并求该抛物线的函数表达式;问题解决:已知仿青蛙机器人起跳后的运动路线形状保持不变,即抛物线的形状不变.(2)如图1,若仿青蛙机器人从点O正上方的点P处起跳,落地点为Q,点P的坐标为,点Q在x轴的正半轴上.求起跳点P与落地点Q的水平距离的长;(3)实验表明:仿青蛙机器人在跃过障碍物时,与障碍物上表面的每个点在竖直方向上的距离不少于,才能安全通过.如图,水平地面上有一个障碍物,其纵切面为四边形,其中,.仿青蛙机器人从距离左侧处的地面起跳,发现不能安全通过该障碍物.若团队人员在起跳处放置一个平台,仿青蛙机器人从平台上起跳,则刚好安全通过该障碍物.请直接写出该平台的高度(平台的大小忽略不计,障碍物的纵切面与仿青蛙机器人的运动路线在同一竖直平面内).23.综合与探究问题情境:如图,在纸片中,,点D在边上,.沿过点D的直线折叠该纸片,使的对应线段与平行,且折痕与边交于点E,得到,然后展平.猜想证明:(1)判断四边的形状,并说明理由拓展延伸:(2)如图,继续沿过点D的直线折叠该纸片,使点A的对应点落在射线上,且折痕与边交于点F,然后展平.连接交边于点G,连接.①若,判断与的位置关系,并说明理由;②若,,,当是以为腰的等腰三角形时,请直接写出的长1.A【分析】本题考查了有理数的大小比较,根据正数大于负数;两个负数,绝对值大的反而小进行比较即可判断求解,掌握有理数的大小比较方法是解题的关键.【详解】解:∵正数大于负数,∴比小的数在,,中,∵两个负数,绝对值大的数反而更小,又∵,∴,∴比小的数是,故选:.2.D【分析】本题考查了中心对称图形,把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此判断即可求解,熟练掌握知识点是解题的关键.【详解】、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意;、是中心对称图形,故本选项符合题意;故选:.3.B【分析】本题考查合并同类项、同底数幂的乘法、完全平方公式、积的乘方等运算法则,根据相应法则,逐一进行计算判断即可.【详解】A.中的和不是同类项,无法合并,故错误.B.,正确.C.应展开为,选项漏掉,故错误.D.,选项中结果为,计算错误.故选:B.4.B【分析】本题考查了全等三角形的判定,由即可判定求解,掌握全等三角形的判定方法是解题的关键.【详解】在与,∵,∴,∴与全等的依据是,故选:.5.C【分析】本题考查求不等式组的解集,分别求出两个不等式的解集,再确定它们解集的公共部分即为不等式组的解集.【详解】解:解不等式,得:;解不等式,得:,∴不等式组的解集为:;故选C.6.C【分析】本题考查了三角形中位线的性质,平行四边形的性质,由三角形中位线的性质得,进而由平行四边形的性质得,即可求解,掌握以上知识点是解题的关键.【详解】解:∵点是对角线的中点,点是边的中点,∴是的中位线,∴,∵四边形是平行四边形,∴,∴,故选:.7.A【分析】本题考查的是方差的计算与含义,比较两组数据的波动情况,需计算它们的方差或极差,根据方差越大,波动越大判断即可.【详解】解:最高气温数据:12,6,10,9,8∴平均数:各数据与平均数的差的平方:,,,,,∴方差:∵最低气温数据:1,,,0,2∴平均数:各数据与平均数的差的平方:,,,,,∴方差:,∴最高气温方差为4,最低气温方差为2,因此日最高气温的波动更大,选项A正确;故选:A8.B【分析】本题考查了圆周角定理,连接,由为的直径可得,进而由得,再根据圆周角定理即可求解,掌握圆周角定理是解题的关键.【详解】解:连接,∵为的直径,∴,∵,∴,∴,故选:.9.C【分析】本题考查了求函数关系式,由表格数据可得是的正比例函数,进而即可求解,由表格数据判断出函数关系是解题的关键.【详解】解:∵,∴与成正比例,即是的正比例函数,∴,故选:.10.D【分析】本题考查了等腰直角三角形的性质,扇形的面积,由等腰直角三角形的性质得,,进而由解答即可求解,掌握以上知识点是解题的关键.【详解】解:∵,∴,∵,∴,∴,故选:.11.【分析】本题考查了利用平方差公式分解因式,掌握平方差公式的特点是解题的关键;由平方差公式分解即可.【详解】解:;故答案为:.12.【分析】本题考查了列代数式,正确理解题意是关键;求出售出一个布老虎增加的利润,即可求出售出a个布老虎增加的利润.【详解】解:售出一个布老虎增加的利润为(元),则售出a个布老虎增加的利润为.故答案为:.13.【分析】本题考查了旋转的性质,解直角三角形的相关计算,将线段绕点逆时针旋转得到,过作轴于点,则,,,然后通过,,即可求解,掌握知识点的应用是解题的关键.【详解】解:如图,将线段绕点逆时针旋转得到,过作轴于点,则,∵点的坐标为,∴,由题意得,,,∴,,∴点对应点的坐标为,故答案为:.14.【分析】本题考查了画树状图或列表法求概率;根据题意画出树状图,求出所有可能的结果数及事件发生的可能结果数,利用概率公式即可求解.【详解】解:画出树状图如下:由图知,所有可能的结果数为4,其中回到回到格子A的可能结果数为2,则回到格子A的概率为;故答案为:.15.【分析】本题考查了相似三角形的判定与性质,勾股定理,矩形的判定与性质,等腰三角形的判定与性质,延长交延长线于点,过作于点,则,由三线合一性质可得,然后证明四边形是矩形,所以,,又,则可证,所以,求出,然后通过平行线的性质和等角对等边可得,设,则,,最后通过勾股定理求出的值即可,掌握知识点的应用是解题的关键.【详解】解:如图,延长交延长线于点,过作于点,则,∵,∴,∵,,∴,,∴,∴四边形是矩形,∴,,∵,∴,∴,∵,,∴,∴,∴,∵,∴,∵,∴,∴,设,则,∴,由勾股定理得:,∴,解得:,即,∴,故答案为:.16.(1);(2)【分析】本题考查了含乘方的有理数的混合运算,解二元一次方程组等知识,正确进行运算是解题的关键;(1)依次计算绝对值、乘方与括号,最后计算加减即可;(2)利用加减消元法,两式相加消去未知数y,求得未知数x的值,再求出y的值即可.【详解】解:(1)原式

(2)解:①+②,得,

将代入②,得,

所以原方程组的解是.17.(1),(2)10【分析】(1)把点C的坐标代入反比例函数解析式中,求得k的值,即可求得反比例函数解析式;由A、C的坐标,利用待定系数法求出直线的解析式,令,求出y的值,即可得点B的坐标;(2)点D在反比例函数的图像上,纵坐标为2,则可求得点D的横坐标,利用四边形的面积等于面积的和即可求解.【详解】(1)解:∵点C的坐标为,且在反比例函数的图像上,∴,即,∴反比例函数的解析式为;设直线的解析式为,把A、C两点坐标分别代入得:,解得:,即直线的解析式为;上式中,令,,∴点B的坐标为;(2)解:∵点D在反比例函数的图像上,纵坐标为2,∴,解得:;由题意知,,∴.【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,反比例函数的图像与性质,割补法求四边形面积等知识,掌握反比例函数的图像与性质是关键.18.(1)36;135;见解析(2)450人(3)见解析【分析】本题主要考查了扇形统计图,条形统计图,用样本估计总体等等,正确读懂统计图是解题的关键.(1)用360度乘以“公共交通”的人数占比可求出对应的圆心角度数;用300乘以“骑电动自行车”的人数占比可求出对应的人数,再求出时间段骑电动车的人数并补全统计图即可;(2)用1500乘以样本中用私家车接送孩子的家长人数占比即可得到答案;(3)电动车和私家车接送孩子的人数占比多,容易造成拥堵;时间段电动车和私家车接送孩子的人数比较多,容易造成拥堵;建议可从换接送方式和换接送时间段两个方面阐述.【详解】(1)解:,∴扇形统计图中“公共交通”所在扇形的圆心角度数为;人,∴本次调查的家长中骑电动自行车接送孩子的有135人;∴时间段骑电动车的人数为人,补全统计图如下所示:

(2)解;人,答:估计用私家车接送孩子的家长人数为450人;(3)解:由扇形统计图可知用电动车和私家车接送孩子的人数占比为,容易造成放学后校门口交通拥挤;由条形统计图可知,在时间段内,接送孩子的电动车和私家车比较多,容易造成放学后校门口交通拥挤;建议家长在条件允许的情况下选用公共交通方式接送孩子或者使用电动车或私家车接送孩子时避开时间段.19.一辆该型号快速换轨车每小时更换钢轨2公里【分析】本题考查了分式方程的应用,正确理解题意,找到等量关系并列出分式方程是解题的关键,注意要检验;设一辆该型号快速换轨车每小时更换钢轨x公里;根据等量关系:快速换轨车更换116公里钢轨比一个工作队人工更换80公里钢轨所用时间少22小时,列出分式方程,求解并检验即可.【详解】解:设一辆该型号快速换轨车每小时更换钢轨x公里.

根据题意得:.

解得:.

经检验,是原方程的根,且符合题意.

答:一辆该型号快速换轨车每小时更换钢轨2公里.20.内栏墙围成泉池的直径的长约为米.【分析】本题考查了解直角三角形的应用——仰角俯角问题,由题意得,四边形为矩形,则,,所以,,设米,则米,米,然后通过,,

列出方程,

解出方程即可,掌握知识点的应用是解题的关键.【详解】解:由题意得,,四边形为矩形,∴,,∴,,设米,则米,米,在中,,,,∴,在中,,,∴,∴,解得,∴(米),答:内栏墙围成泉池的直径的长约为米.21.(1),等角的补角相等;(2)见解析(3)见解析【分析】(1)设的交点为O,利用矩形的性质及已知可证明是等边三角形,由等边三角形的性质及矩形性质即可求解.利用等角的补角相等即可完成问题2的依据.(2)利用三角形外角的性质及等边三角形的性质即可,从而问题完成;(3)作一个等边三角形即可完成.【详解】(1)解:设的交点为O,如图;∵四边形是矩形,∴;∵对角线与互为双关联线段,∴,∴是等边三角形,∴,∴;

故答案为:;问题2中的依据是:等角的补角相等;

故答案为:等角的补角相等;(2)解:是的外角,

.是的外角,

,.

即线段与线段所在直线形成的夹角中有一个角是.,线段与线段是双关联线段.(3)解:答案不唯一,例如:作法一:

作法二:

如图,线段即为所求.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,全等三角形的判定与性质,尺规作图等知识,掌握这些知识是解题的关键.22.(1),;(2)起跳点P与落地点Q的水平距离的长为;(3)【分析】本题考查二次函数的实际应用,读懂题意,正确的列出函数关系式,是解题的关键:(1)根据起跳点与落地点的距离为,得到对称轴为直线,根据运动路线的最高点距地面,得到顶点纵坐标为,写出顶点坐标,列出顶点式,把代入,求出函数解析式即可;(2)根据抛物线的形状不变,利用平移思想,写出新的函数解析式,令,求出的值,进而求出的长即可;(3)设该平台的高度为,根据题意,得到新的抛物线的解析式为:,根据仿青蛙机器人从平台上起跳,则刚好安全通过该障碍物,得到抛物线过点,代入求解即可;【详解】解:(1)由题意,得:抛物线的对称轴为直线,顶点纵坐标为,∴顶点坐标为,设抛物线的函数解析式为:,∵图象过原点,∴,解:,∴;(2)∵抛物线的形状不变,点,故第二次的函数图象可以看作由(1)的抛物线向上平移75个单位长度,得到的,∴新的抛物线的解析式为:,当时,,解得:,(舍去);故起跳点P与落地点Q的水平距离的长为;(3)设该平台的高度为,由题意,设新的函数解析式为:,∵,仿青蛙机器人从距离左侧处的地面起跳,由题意,仿青蛙机器人经过正上方处,即抛物线经过点,即:,∴把代入,得:,解得:;故设该平台的高度为.23.(1)四边形是菱形,理由见解析;(2)①.理由见解析;②5或【分析】(1)由折叠的性质可得,,再根据平行线的性质可得,进而得到,由等角对等边推出,从而证明,即可四边形是菱形;(2)①由(1)推出,由折叠的性质得到,结合已知可得,进而推出,得到,再根据三角形内角和定理即可求出,即可得到与的位置关系;②分是以为腰为底的等腰三角形和是以为腰为底的等腰三角形两种情况讨论,如图,延长交于点H,设交点为,利用三角形相似的性质建立方程求解即可.【详解】(1)解:四边形是菱形,理由如下:由折叠的性质可得,,∵,∴,∴,∴,∴,∴四边形是菱形;(2)证明:①,理由如下:由(1)知四边形是菱形,∴,由折叠的性质得到,∵,∴,∴,∴,∵,∴,∴;解:②∵,,,∴,当是以为腰为底的等腰三角形时,如图,延长交于点H,设交点为,则,∵,,∴,∴,由折叠的性质得,,,∴,∴;∵,∴;∵,∴,∴,∴,∵,∴,∴,设,∴,∵,∴,∴,即,∴,∴,∴,∵,∴,∴,∵,∴,∴,∴,解得:,∴;当是以为腰为底的等腰三角形时,如图,则,同理得,,设,∴,∵,∴,∴,即,∴,∴,∴,∵是以为腰为底的等腰三角形,,∴,∴,∴,∵,∴,∴,∴,解得:,∴;综上,的长为或.【点睛】本题考查折叠的性质,三角形全等的判定与性质,相似三角形的判定与性质,菱形的判定与性质,三角形内角和定理,等腰三角形的性质,合理作出辅助线,构造三角形全等,结合分类讨论的思想是解题的关键.

2024年山西省中考数学真题试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A.+100℃ B.﹣100℃ C.+50℃ D.﹣50℃2.(3分)1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是()A.山西煤炭化学研究所 B.东北地理与农业生态研究所 C.西安光学精密机械研究所 D.生态环境研究中心3.(3分)下列运算正确的是()A.2m+n=2mn B.m6÷m2=m3C.(﹣mn)2=﹣m2n2 D.m2•m3=m54.(3分)斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为()A. B. C. D.5.(3分)一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行.若斜面的坡角α=25°,则摩擦力F2与重力G方向的夹角β的度数为()A.155° B.125° C.115° D.65°6.(3分)已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y27.(3分)如图,已知△ABC,以AB为直径的⊙O交BC于点D,与AC相切于点A,连接OD.若∠AOD=80°,则∠C的度数为()A.30° B.40° C.45° D.50°8.(3分)一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是()A. B. C. D.9.(3分)生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为()尾长(cm)6810体长y(cm)45.560.575.5A.y=7.5x+0.5 B.y=7.5x﹣0.5C.y=15x D.y=15x+45.510.(3分)在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,EG,FH交于点O.若四边形ABCD的对角线相等,则线段EG与FH一定满足的关系为()A.互相垂直平分 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分且相等二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)比较大小:2(填“>”,“<”或“=”).12.(3分)黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且,若NP=2cm,则BC的长为______cm(结果保留根号).13.(3分)机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度v(m/s)是载重后总质量m(kg)的反比例函数.已知一款机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;当其载重后总质量m=90kg时,它的最快移动速度v=__________m/s.14.(3分)如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).通过测量得到扇形AOB的圆心角为90°,OA=1m,点C,D分别为OA,OB的中点,则花窗的面积为___________m2.15.(3分)如图,在▱ABCD中,AC为对角线,AE⊥BC于点E,点F是AE延长线上一点,且∠ACF=∠CAF,线段AB,CF的延长线交于点G.若AB=,AD=4,tan∠ABC=2,则BG的长为__________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(2)化简:.17.(7分)为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元,则最多可购买这种型号的水基灭火器多少个?水基灭火器干粉灭火器

18.(10分)为激发青少年崇尚科学、探索未知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图.数据分析:小夏对这两个小组的成绩进行了如下分析:平均数(分)中位数(分)众数(分)方差优秀率甲组7.625a74.4837.5%乙组7.6257b0.73c请认真阅读上述信息,回答下列问题:(1)填空:a=__________,b=__________,c=___________.(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).19.(7分)当下电子产品更新换代速度加快,废旧智能手机数量不断增加.科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源.据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.

20.(7分)如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米;……数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33).21.(9分)阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读,并完成相应任务.关于“等边半正多边形”的研究报告博学小组研究对象:等边半正多边形研究思路:类比三角形、四边形,按“概念﹣性质﹣判定”的路径,由一般到特殊进行研究.研究方法:观察(测量、实验)﹣猜想﹣推理证明研究内容:【一般概念】对于一个凸多边形(边数为偶数),若其各边都相等,且相间的角相等、相邻的角不相等,我们称这个凸多边形为等边半正多边形.如图1,我们学习过的菱形(正方形除外)就是等边半正四边形,类似地,还有等边半正六边形、等边半正八边形…【特例研究】根据等边半正多边形的定义,对等边半正六边形研究如下:概念理解:如图2,如果六边形ABCDEF是等边半正六边形,那么AB=BC=CD=DE=EF=FA,∠A=∠C=∠E,∠B=∠D=∠F,且∠A≠∠B.性质探索:根据定义,探索等边半正六边形的性质,得到如下结论:内角:等边半正六边形相邻两个内角的和为▲°.对角线:…任务:(1)直接写出研究报告中“▲”处空缺的内容:________.(2)如图3,六边形ABCDEF是等边半正六边形.连接对角线AD,猜想∠BAD与∠FAD的数量关系,并说明理由.(3)如图4,已知△ACE是正三角形,⊙O是它的外接圆.请在图4中作一个等边半正六边形ABCDEF(要求:尺规作图,保留作图痕迹,不写作法).

22.(12分)综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红.第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式.(2)求6米材料恰好用完时DE与CF的长.(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.

23.(13分)综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由.深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由.②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.

2024年山西省中考数学真题试卷答案解析一、选择题.1.【答案】B.2.【答案】A.3.【答案】D.4.【答案】C.5.【答案】C.6.【答案】B.7.【答案】D.8.【答案】B.9.【答案】A.10.【答案】A.二、填空题.11.【答案】>.12.【答案】.13.【答案】4.14.【答案】.15.【答案】解:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,如下图所示:∵四边形ABCD为平行四边形∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD又∵AE⊥BC在Rt△ABE中,tan∠ABC==2∴AE=2BE由勾股定理得:AE2+BE2=AB2即(2BE)2+BE2=()2∴BE=1∴AE=2BE=2∵四边形ABCD为平行四边形∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD∴CE=BC﹣BE=3在Rt△ACE中,由勾股定理得:AC=∵∠ACF=∠CAF∴FA=FC∵FH⊥AC∴AH=CH=AC=∵S△FAC=AC•FH=AF•CE∴FH=在Rt△AFH中,由勾股定理得:AF2﹣FH2=AH2∴AF=∴EF=AF﹣AE=∵BC∥AD∴△FCE∽△FKA∴EF:AF=CE:AK即∴AK=∴DK=AK﹣AD=∵AB∥CD∴△KDC∽△KAG∴DK:AK=CD:AG即∴AG=∴BG=AG﹣AB=.故答案为:.三、解答题.16.【答案】(1)(2)17.【答案】12个.18.【答案】7.5;7;25%.19.【答案】黄金240克,白银1000克.20.【答案】点A到地面的距离AB的长约为27米.21.【答案】(1)240(2)∠BAD=∠FAD.理由如下:连接BD,FD.∵六边形ABCDEF是等边半正六边形.∴AB=BC=CD=DE=EF=FA,∠C=∠E.∴△BCD≌△FED.∴BD=FD.在△ABD与△AFD中∴△BAD≌△FAD.∴∠BAD=∠FAD.(3)答案不唯一作法一:作法二:如图,六边形ABCDEF即为所求.22.【答案】(1)y=﹣x2+9(﹣3≤x≤3)(2)DE的长为4米,CF的长为2米(3)解:(1)建立如图所示的平面直角坐标系∵OP所在直线是AB的垂直平分线,且AB=6∴.∴点B的坐标为(3,0)∵OP=9∴点P的坐标为(0,9)∵点P是抛物线的顶点∴设抛物线的函数表达式为y=ax2+9∵点B(3,0)在抛物线y=ax2+9上∴9a+9=0解得:a=﹣1.∴抛物线的函数表达式为y=﹣x2+9(﹣3≤x≤3).(2)点D,E在抛物线y=﹣x2+9上∴设点E的坐标为(m,﹣m2+9)∵DE∥AB,交y轴于点F∴DF=EF=m,OF=﹣m2+9∴DE=2m.∵在Rt△ABC中,∠ACB=90°,OA=OB∴.∴CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6根据题息,得DE+CF=6∴﹣m2+6+2m=6解得:m1=2,m=0(不符合题意,舍去)∴m=2.∴DE=2m=4,CF=﹣m2+6=2答:DE的长为4米,CF的长为2米.(3)如图矩形灯带为GHML由点A,B,C的坐标得,直线AC和BC的表达式分别为:y=x+3,y=﹣x+3设点G(m,﹣m2+9),H(﹣m,﹣m2+9),L(m,m+3),M(﹣m,﹣m+3)则矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤故矩形周长的最大值为米.23.【答案】(1)四边形AECF为矩形(2)CH=MD(3)或解:(1)四边形AECF为矩形.理由如下:∵AE⊥BC,CF⊥AD∴∠AEC=90°,∠AFC=90°∵四边形ABCD为菱形∴AD∥BC∴∠AFC+∠ECF=180°,∠ECF=180°﹣∠AFC=90°∴四边形AECF为矩形.(2)①CH=MD.理由如下:证法一:∵四边形ABCD为菱形∴AB=AD,∠B=∠D.∵△ABE旋转得到△AHG∴AB=AH,∠B=∠H.∴AH=AD,∠H=∠D.∵∠HAM=∠DAC∴△HAM≌△DAC∴AM=AC∴AH﹣AC=AD﹣AM∴CH=MD.证法二:如图,连接HD.∵四边形ABCD为菱形∴AB=AD,∠B=∠ADC∵△ABE旋转得到△AHG∴AB=AH,∠B=∠AHM∴AH=AD,∠AHM=∠ADC∴∠AHD=∠ADH∴∠AHD﹣∠AHM=∠ADH﹣∠ADC∴∠MHD=∠CDH∵DH=HD∴△CDH≌△MHD∴CH=MD.②情况一:如图,当点G旋转至BA的延长线上时,GH⊥CD,此时S四边形AMNQ=.∵AB=5,BE=4∴由勾股定理可得AE=3∵△ABE旋转到△AHG∴AG=AE=3,GH=BE=4,∠H=∠B∵GN⊥CD∴GN=AE=3∴NH=1∵AD∥BC∴∠GAM=∠B∴tan∠GAM=tan∠B,即解得GM=,则MH=∵tan∠H=tan∠B∴在Rt△QNH中,QN=∴S四边形AMNQ=S△AMH﹣S△QNH=MH•AG﹣NH•QN=.情况二:如图,当点G旋转至BA上时,GH⊥CD,此时S四边形AMNQ=.同第一种情况的计算思路可得:NH=7,QN=,AG=3,MH=∴S四边形AMNQ=S△QNH﹣S△AMH=NH•QN﹣MH•AG=.综上,四边形AMNQ的面积为或.

2023年山西中考数学真题及答案第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算的结果为().A.3 B. C. D.2.全民阅读有助于提升一个国家、一个民族的精神力量.图书馆是开展全民阅读的重要场所.以下是我省四个地市的图书馆标志,其文字上方的图案是轴对称图形的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.山西是全国电力外送基地,2022年山西省全年外送电量达到1464亿千瓦时,同比增长.数据1464亿千瓦时用科学记数法表示为()A.千瓦时 B.千瓦时C.千瓦时 D.千瓦时5.如图,四边形内接于为对角线,经过圆心.若,则的度数为()A. B. C. D.6.一种弹簧秤最大能称不超过的物体,不挂物体时弹簧的长为,每挂重物体,弹簧伸长.在弹性限度内,挂重后弹簧的长度与所挂物体的质量之间的函数关系式为()A. B. C. D.7.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为()A. B. C. D.8.已知都在反比例函数的图象上,则a、b、c的关系是()A. B. C. D.9.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为,曲线终点为,过点的两条切线相交于点,列车在从到行驶的过程中转角为.若圆曲线的半径,则这段圆曲线的长为().A. B. C. D.10.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点均为正六边形的顶点.若点的坐标分别为,则点的坐标为()A. B. C. D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算(+)(﹣)的结果为__________.12.如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有__________个白色圆片(用含n的代数式表示)13.如图,在中,.以点为圆心,以的长为半径作弧交边于点,连接.分别以点为圆心,以大于的长为半径作弧,两弧交于点,作射线交于点,交边于点,则的值为__________.14.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.15.如图,在四边形中,,对角线相交于点.若,则的长为__________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:;(2)计算:.17.解方程:.18.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.19.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?20.2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑洛种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算和的长度(结果精确到.参考数据:,).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A,B,C,D,E同一竖直平面内,与均与地面平行,岸墙于点A,,,,,计算结果交流展示21.阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.瓦里尼翁平行四边形我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形.我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.②瓦里尼翁平行四边形周长与原四边形对角线的长度也有一定关系.③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:证明:如图2,连接,分别交于点,过点作于点,交于点.∵分别为的中点,∴.(依据1)∴.∵,∴.∵四边形瓦里尼翁平行四边形,∴,即.∵,即,∴四边形是平行四边形.(依据2)∴.∵,∴.同理,…任务:(1)填空:材料中的依据1是指:_____________.依据2是指:_____________.(2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)(3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形周长与对角线长度的关系,并证明你的结论.22.问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果.23.如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.(1)求直线的函数表达式及点C的坐标;(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.①当时,求的值;②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出S的最大值.

参考答案第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】B【10题答案】【答案】A第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)【11题答案】【答案】﹣1【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】【15题答案】【答案】##三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)【16题答案】【答案】(1)1;(2)【17题答案】【答案】【18题答案】【答案】(1)69,69,70(2)82分(3)小涵能入选,小悦不一定能入选,见解析【19题答案】【答案】(1)一个部件的质量为1.2吨,一个部件的质量为0.8吨(2)6套【20题答案】【答案】的长约为的长约为.【21题答案】【答案】(1)三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半);平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)(2)答案不唯一,见解析(3)平行四边形的周长等于对角线与长度的和,见解析【22题答案】【答案】(1)正方形,见解析(2)①,见解析;②【23题答案】【答案】(1),点的坐标为(2)①2或3或;②,S的最大值为2022年山西中考数学试卷及答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣6的相反数为()A.6 B. C. D.﹣62.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A. B. C. D.3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨 B.68285×104吨 C.6.8285×107吨 D.6.8285×108吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移 B.旋转 C.轴对称 D.黄金分割5.不等式组的解集是()A.x≥1 B.x<2 C.1≤x<2 D.x<6.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100° B.120° C.135° D.150°7.化简﹣的结果是()A. B.a﹣3 C.a+3 D.8.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60° B.65° C.70° D.75°9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大赛”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A. B. C. D.10.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3 B.3π﹣ C.2π﹣3 D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:×的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25m2时,该物体承受的压强p的值为Pa.13.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.调查结论……请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.

2021年山西中考数学真题及答案第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算的结果是()A.-6 B.6 C.-10 D.102.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.《中国核能发展报告2021》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,相当于造林77.14万公顷.已知1公顷平方米,则数据77.14万公顷用科学记数法表示为()A.平方米 B.平方米C.平方米 D.平方米5.已知反比例函数,则下列描述不正确的是()A.图象位于第一,第三象限 B.图象必经过点C.图象不可能与坐标轴相交 D.随的增大而减小6.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()星期一二三四五六日收入(点)15212727213021A.27点,21点 B.21点,27点C.21点,21点 D.24点,21点7.如图,在中,切于点,连接交于点,过点作交于点,连接.若,则为()A. B. C. D.8.在勾股定理的学习过程中,我们已经学会了运用以下图形,验证著名的勾股定理:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想 B.分类思想 C.数形结合思想 D.函数思想9.如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为()A. B. C. D.10.抛物线的函数表达式为,若将轴向上平移2个单位长度,将轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为()A. B. C. D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:__________.12.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”,两点的坐标分别为,,则叶杆“底部”点的坐标为__________.13.如图,在菱形中,对角线,相交于点,,,,交于点,则的长为__________.14.太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯的坡度(为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端以0.5米/秒的速度用时40秒到达扶梯顶端,则王老师上升的铅直高度为__________米.15.如图,在中,点是边上的一点,且,连接并取的中点,连接,若,且,则的长为__________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)计算:.(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.解:………………第一步……………第二步…………第三步……………………第四步…………第五步任务一:填空:①以上解题过程中,第二步是依据____________________(运算律)进行变形的;②第__________步开始出现错误,这一步错误的原因是______________________________;任务二:请直接写出该不等式的正确解集.解:__________.17.(本题6分)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).18.(本题7分)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.19.(本题10分)近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论