版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省海滨学校、港尾中学2026届高二数学第一学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列,的前n项和分别是,若,则()A. B.C. D.2.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.3.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.54.若不等式组表示的区域为,不等式表示的区域为,向区域均匀随机撒颗芝麻,则落在区域中的芝麻数约为()A. B.C. D.5.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.166.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆7.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.28.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.9.中心在原点的双曲线C的右焦点为,实轴长为2,则双曲线C的方程为()A. B.C. D.10.已知双曲线上点到点的距离为15,则点到点的距离为()A.9 B.6C.6或36 D.9或2111.倾斜角为45°,在轴上的截距是的直线方程为()A. B.C. D.12.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为1二、填空题:本题共4小题,每小题5分,共20分。13.若函数在(0,+∞)内有且只有一个零点,则a的值为_____14.直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____15.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______16.已知两点和则以为直径的圆的标准方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由.18.(12分)如图,在四棱柱中,侧棱底面,,,,,,,()(1)求证:平面;(2)若直线与平面所成角的正弦值为,求的值;(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)19.(12分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值21.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和22.(10分)已知函数的图像在处的切线斜率为,且时,有极值.(1)求的解析式;(2)求在上的最大值和最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合等差数列前项和公式求得正确答案.【详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C2、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.3、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C4、A【解析】作出两平面区域,计算两区域的公共面积,利用几何概型得出芝麻落在区域Γ内的概率,进而可得答案.【详解】作出不等式组所表示的平面区域如下图中三角形ABC及其内部,不等式表示的区域如下图中的圆及其内部:由图可得,A点坐标为点坐标为坐标为点坐标为.区域即的面积为,区域的面积为圆的面积,即,其中区域和区域不相交的部分面积即空白面积,所以区域和区域相交的部分面积,所以落入区域的概率为.所以均匀随机撒颗芝麻,则落在区域中芝麻数约为.故选:A.5、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C6、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.7、A【解析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A8、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.9、D【解析】根据条件,求出,的值,结合双曲线的方程进行求解即可【详解】解:设双曲线的方程为由已知得:,,再由,,双曲线的方程为:故选:D10、D【解析】利用双曲线的定义可得答案.【详解】设,,,为双曲线的焦点,则由双曲线定义,知,而所以或21故选:D.11、B【解析】先由倾斜角为45°,可得其斜率为1,再由轴上的截距是,可求出直线方程【详解】解:因为直线的倾斜角为45°,所以直线的斜率为,因为直线在轴上的截距是,所以所求的直线方程为,即,故选:B12、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、a=3【解析】对函数进行求导,分类讨论函数单调性,根据单调性结合已知可以求出a的值.【详解】∵函数在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3故答案为:a=3【点睛】本题考查了利用导数研究已知函数的零点求参数取值问题,考查了分类讨论和数学运算能力.14、4【解析】由题意得,再结合抛物线的定义即可求解.【详解】由题意得,由抛物线的定义知:,故答案为:4.15、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.16、【解析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,故所求圆的半径为,则所求圆的标准方程是:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)是定值,定值为.【解析】(1)设直线方程为,联立直线与抛物线的方程得到韦达定理,再利用韦达定理求出,即得证;(2)设直线方程为,联立直线与抛物线的方程得到韦达定理,再求出,,即得解.【详解】(1)设直线方程为,联立直线与抛物线的方程,消去,得,所以.所以即.(2)设直线方程为,联立直线与抛物线的方程,消去,得,故.设的方程为,联立直线与拋物线的方程,消去得,从而,则,同理可得,,即定值.18、(1)证明见解析(2)(3)【解析】(1)取得中点,连接,可证明四边形是平行四边形,再利用勾股定理的逆定理可得,即,又侧棱底面,可得,利用线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,由线面角的向量公式即可得出;(3)由题意可与左右平面,,上或下面,拼接得到方案,新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出【详解】(1)证明:取的中点,连接,,,四边形是平行四边形,,且,,,,又,侧棱底面,,,平面(2)以为坐标原点,、、的方向为轴的正方向建立空间直角坐标系,则,,,,,设平面的一个法向量为,则,取,则,设与平面所成角为,则,解得,故所求(3)由题意可与左右平面,,上或下面,拼接得到方案新四棱柱共有此4种不同方案写出每一方案下的表面积,通过比较即可得出【点睛】本题主要考查线面垂直的判定定理的应用,利用向量求线面角、柱体的定义应用和表面积的求法,意在考查学生的直观想象能力,逻辑推理能力,数学运算能力及化归与转化能力,属于中档题19、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜率不存在和斜率存在两种情况讨论,结合点到直线的距离公式,列出方程,即可求解.(2)设点,,根据线段的中点为,求得,结合在圆上,代入即可求解.【小问1详解】解:由题意,圆,可得圆心,半径,因为直线被圆C截得的弦长为,则圆心到直线的距离为,当直线的斜率不存在时,此时直线的方程为,满足题意;当直线的斜率存在时,设直线的方程为,即,则,解得,即,综上可得,所求直线的方程为或.【小问2详解】解:设点,因为点,线段的中点为,可得,解得,又因为在圆上,可得,即,即点的轨迹方程为.20、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为21、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年芷江侗族自治县人民法院招聘司法辅助等人员的备考题库及一套参考答案详解
- 合山市经济贸易和科学技术局招聘备考题库(2025年12月30日)含答案详解
- 2025年无人零售行业应用前景报告
- 大学医学教学中医学伦理与临床决策的实践课题报告教学研究课题报告
- 2025年成人学历教育转型成本效益分析报告
- 宾馆物业维修年终总结(3篇)
- 保养维护年终总结范文(3篇)
- 数字化平台在高校学生创新能力评价中的应用与模式创新教学研究课题报告
- 2026年禁毒知识竞赛试卷及答案(一)
- 2026年零碳园区综合能源项目可行性研究报告
- DB6301∕T 4-2023 住宅物业星级服务规范
- 护理查房与病例讨论区别
- 公司特殊贡献奖管理制度
- T/CA 105-2019手机壳套通用规范
- 2025-2031年中国汽车维修设备行业市场全景评估及产业前景研判报告
- 门窗拆除合同协议书范本
- GB/T 1040.1-2025塑料拉伸性能的测定第1部分:总则
- 重症胰腺炎的中医护理
- SL631水利水电工程单元工程施工质量验收标准第3部分:地基处理与基础工程
- 2024年高中语文选择性必修上册古诗文情境式默写(含答案)
- 中央2025年全国妇联所属在京事业单位招聘93人笔试历年参考题库附带答案详解-1
评论
0/150
提交评论