版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛第十六中学2026届数学高二上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,则数列的通项公式为()A. B.C. D.2.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是3.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.634.圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A. B.C. D.5.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或6.已知,则点到平面的距离为()A. B.C. D.7.已知中心在坐标原点,焦点在轴上的双曲线的离心率为,则其渐近线方程为()A. B.C. D.8.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确9.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.10.椭圆的左、右焦点分别为、,上存在两点、满足,,则的离心率为()A. B.C. D.11.、是椭圆的左、右焦点,点在椭圆上,,过作的角平分线的垂线,垂足为,则的长为A.1 B.2C.3 D.412.已知空间向量,,,若,,共面,则m+2t=()A.-1 B.0C.1 D.-6二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足:,,,则______14.已知直线与曲线,在曲线上随机取一点,则点到直线的距离不大于的概率为__________.15.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.16.写出一个同时满足下列条件①②③的圆C的标准方程:__________①圆C的圆心在第一象限;②圆C与x轴相切;③圆C与圆外切三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.18.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.19.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.20.(12分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.21.(12分)一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为的圆形区域内(圆形区域的边界上无暗礁),已知小岛中心位于轮船正西处,港口位于小岛中心正北处.(1)若,轮船直线返港,没有触礁危险,求的取值范围?(2)若轮船直线返港,且必须经过小岛中心东北方向处补水,求的最小值.22.(10分)已知点到两个定点的距离比为(1)求点的轨迹方程;(2)若过点的直线被点的轨迹截得的弦长为,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D2、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.3、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.4、A【解析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【点睛】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.5、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.6、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A7、A【解析】根据离心率求出的值,再根据渐近线方程求解即可.【详解】因双曲线焦点在轴上,所以渐近线方程为:,又因为双曲线离心率为,且,所以,解得,即渐近线方程为:.故选:A.8、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.9、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C10、A【解析】作点关于原点的对称点,连接、、、,推导出、、三点共线,利用椭圆的定义可求得、、、,推导出,利用勾股定理可得出关于、的齐次等式,即可求得该椭圆的离心率.【详解】作点关于原点的对称点,连接、、、,则为、的中点,故四边形为平行四边形,故且,则,所以,,故、、三点共线,由椭圆定义,,有,所以,则,再由椭圆定义,有,因为,所以,在中,即,所以,离心率故选:A.11、A【解析】延长交延长线于N,则选:A.【点睛】涉及两焦点问题,往往利用椭圆定义进行转化研究,而角平分线性质可转化到焦半径问题,两者切入点为椭圆定义.12、D【解析】根据向量共面列方程,化简求得.【详解】,所以不共线,由于,,共面,所以存在,使,即,,,,,即.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】运用累和法,结合等差数列前项和公式进行求解即可.【详解】因为,,所以当时,有,因此有:,即,当时,适合上式,所以,故答案为:.14、【解析】画出示意图,根据图形分析可知点在阴影部分所对的劣弧上,由几何概型可求出.【详解】作出示意图曲线是圆心为原点,半径为2的一个半圆.圆心到直线距离,而点到直线的距离为,故若点到直线的距离不大于,则点在阴影部分所对的劣弧上,由几何概型的概率计算公式知,所求概率为.故答案为:.【点睛】本题考查几何概型的概率计算,属于中档题.15、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.16、(答案不唯一,但圆心坐标需满足,)【解析】首先设圆的圆心和半径,根据条件得到关于的方程组,即可求解.【详解】设圆心坐标为,由①可知,半径为,由②③可知,整理可得,当时,,,所以其中一个同时满足条件①②③的圆的标准方程是.故答案为:(答案不唯一,但圆心坐标需满足,)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)知,所以.所以①在①的等式两边同乘以,得②由①②等式两边相减,得,所以数列的前项和.18、(1)的单调递增区间为,,单调递减区间为,(2)【解析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当f(1)≤1f(-1)≤1即在上恒成立所以,因此满足条件的的取值范围是19、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.20、(1)略;(2)【解析】(1)推导出BD⊥BC,PB⊥BC,从而BC⊥平面PBD,由此能证明PD⊥BC.(2)利用等体积求得点B到面的距离【详解】(1)∵在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC为等边三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD⊂平面PBD,∴PD⊥BC(2)由(1)知,,故故得点B到面PCD的距离为【点睛】本题考查线线垂直的证明,考查点面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题21、(1)(2)120【解析】(1)建立平面直角坐标系设直线方程,根据点到直线的距离公式可得;(2)先求补水点的坐标,根据直线过该点,结合所求,根据基本不等式可得.【小问1详解】根据题意,以小岛中心为原点,建立平面直角坐标系,当时,则轮船返港的直线为,因为没有触礁危险,所以原点到的距离,解得.【小问2详解】根据题意可得,,点C在直线上,故点C,设轮船返港的直线是,则,所以.当且仅当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年财务会计制度执行与审计手册
- 烧结墙板施工方案(3篇)
- 电站混凝土施工方案(3篇)
- 突起地标施工方案(3篇)
- 联苯泄漏应急预案(3篇)
- 花式活动策划方案范文(3篇)
- 误食毒饵应急预案(3篇)
- 跌倒后应急预案(3篇)
- 防洪围墙施工方案(3篇)
- 隧道重复施工方案(3篇)
- 医用煮沸槽使用课件
- 初中寒假计划课件
- 2024-2025学年江苏省南京市玄武区八年级上学期期末语文试题及答案
- 专升本语文教学课件
- 别人买房子给我合同范本
- 电力通信培训课件
- 中建三局2024年项目经理思维导图
- 基层党建知识测试题及答案
- DG-TJ08-2021-2025 干混砌筑砂浆抗压强度现场检测技术标准
- 鼻窦炎的护理讲课课件
- 肠系膜脂膜炎CT诊断
评论
0/150
提交评论