版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁市碧江区铜仁一中2026届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么3.已知命题:,命题:则是的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要4.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.25.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.6.已知随机变量服从正态分布,,则()A. B.C. D.7.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.28.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1449.已知等比数列的前n项和为,,,则()A. B.C. D.10.已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A. B.C. D.11.若,则复数在复平面内对应的点在()A.曲线上 B.曲线上C.直线上 D.直线上12.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点F恰好是椭圆的右焦点,且两条曲线交点的连线过点F,则该椭圆的离心率为____________14.直线与两坐标轴相交于,两点,则线段的垂直平分线的方程为___________.15.若直线与平行,则实数________.16.过点的直线与抛物线相交于,两点,,则直线的方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m,交椭圆于A,B两个不同点.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)求证直线MA,MB与x轴始终围成一个等腰三角形.18.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围19.(12分)在平面直角坐标系中,点,直线轴,垂足为H,,圆N过点O,与l的公共点的轨迹为(1)求的方程;(2)过M的直线与交于A,B两点,若,求20.(12分)为让“双减”工作落实到位,某中学积极响应上级号召,全面推进中小学生课后延时服务,推行课后服务“”模式,开展了内容丰富、形式多样、有利于学生身心成长的活动.该中学初一共有700名学生其中男生400名、女生300名.为让课后服务更受欢迎,该校准备推行体育类与艺术类两大类活动于2021年9月在初一学生中进行了问卷调查.(1)调查结果显示:有的男学生和的女学生愿意参加体育类活动,其他男学生与女学生都不愿意参加体育类活动,请完成下边列联表.并判断是否有的把握认为愿意参加体育类活动与学生的性别相关?愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生女学生合计(2)在开展了两个月活动课后,为了了解学生的活动课情况,在初一年级学生中按男女比例分层抽取7名学生调查情况,并从这7名学生中随机选择3名学生进行展示,用X表示选出进行展示的3名学生中女学生的人数,求随机变量X的分布列和数学期望.0.1000.0500.0250.0102.7063.8415.0246.635参考公式:,其中.21.(12分)如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求异面直线与所成角余弦值;(3)在线段上是否存在一点,使二面角大小为?若存在,请指出点的位置,若不存在,请说明理由.22.(10分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B2、C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C3、B【解析】利用充分条件和必要条件的定义判断.【详解】解:若,则或,即或,所以是的必要不充分条件故选:B4、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.5、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.6、B【解析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【点睛】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题7、B【解析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【详解】,,即联立直线和抛物线方程得设,则解得故选:B8、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.9、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.10、C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C11、B【解析】根据复数的除法运算,先化简,进而求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,因此复数在复平面内对应的点为,可知其在曲线上.故选:B12、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设两条曲线交点为根据椭圆和抛物线对称性知,不妨点A在第一象限,由A在抛物线上得,A在椭圆上得.则由条件得:.解得(舍去)14、【解析】由直线的方程求出直线的斜率以及,两点坐标,进而可得线段的垂直平分线的斜率以及线段的中点坐标,利用点斜式即可求解.【详解】由直线可得,所以直线的斜率为,所以线段的垂直平分线的斜率为,令可得;令可得;即,,所以线段的中点坐标为,所以线段的垂直平分线的方程为,整理得.故答案为:.15、【解析】根据两直线平行可得出关于实数的等式与不等式,即可解得实数的值.【详解】因为,则,解得.故答案为:.16、##【解析】根据抛物线方程可得焦点坐标,进而点P为抛物线的焦点,设,利用抛物线的定义可得,有轴,即可得出结果.【详解】由题意知,抛物线的焦点坐标,又,所以点P为抛物线的焦点,设,由,由抛物线的定义得,解得,所以AB垂直与x轴,所以直线AB的方程为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)且;(Ⅲ)证明见解析.【解析】(Ⅰ)设出椭圆方程,根据题意得出关于的方程组,从而求得椭圆的方程;(Ⅱ)根据题意设出直线方程,并与椭圆方程联立消元,根据直线与椭圆方程有两个不同交点,利用即可求出m取值范围;(Ⅲ)设直线MA,MB的斜率分别为k1,k2,根据题意把所证问题转化为证明k1+k2=0即可.【详解】(1)设椭圆方程为,由题意可得,解得,∴椭圆方程为;(Ⅱ)∵直线l平行于OM,且在y轴上的截距为m,,所以设直线的方程为,由消元,得∵直线l与椭圆交于A,B两个不同点,所以,解得,所以m的取值范围为.(Ⅲ)设直线MA,MB的斜率分别为k1,k2,只需证明k1+k2=0即可,设,由(Ⅱ)可知,则,由,而,,故直线MA,MB与x轴始终围成一个等腰三角形.18、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m的取值范围是19、(1);(2).【解析】(1)设出圆N与l的公共点坐标,再探求出点N的坐标,并由圆的性质列出方程化简即得.(2)设出直线AB的方程,与的方程联立,结合已知条件并借助韦达定理计算作答.【小问1详解】设为圆N与l的公共点,而直线轴,垂足为H,则,又,,于是得,因O,P在圆N上,即,则有,化简整理得:,所以的方程为.【小问2详解】显然直线AB不垂直于y轴,设直线AB的方程为,,由消去x并整理得:,则,因为,则点A到x轴距离是点B到x轴距离的2倍,即,由解得或,则有,因此有,所以.20、(1)详见解析;(2)详见解析.【解析】(1)根据初一男生数和女生数,结合有的男学生和的女学生,愿意参加体育类活动求解;计算的值,再与临界值表对照下结论;(2)根据这7名学生中男生有4名,女生有3名,随机选择3名由抽到女学生的人数X可能为0,1,2,3,分别求得其概率,列出分布列,再求期望.【小问1详解】解:因为初一共有700名学生其中男生400名、女生300名,且有的男学生和的女学生,所以愿意参加体育类活动的男生有300名,女生有200名,则列联表如下:愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生300100400女学生200100300合计500200700,所以有的把握认为愿意参加体育类活动与学生的性别相关;【小问2详解】这7名学生中男生有4名,女生有3名,随机选择3名学生进行展示,抽到女学生的人数X可能为0,1,2,3,所以,,所以随机变量X分布列如下:X0123p21、(1)证明见解析;(2);(3)存在,点在线段上位于靠近点的四等分点处.【解析】(1)证明平面,利用面面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成角的余弦值;(3)假设存在点,设,其中,利用空间向量法可得出关于的方程,结合的取值范围可求得的值,即可得出结论.【小问1详解】证明:,,为的中点,则且,四边形为平行四边形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小问2详解】解:,为的中点,.平面平面,且平面平面,平面,平面.如图,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,,,则,,异面直线与所成角的余弦值为.【小问3详解】解:假设存在点,设,其中,所以,,且,设平面法向量为,所以,令,可得,由(2)知平面的一个法向量为,二面角为,则,整理可得,因,解得.故存在点,且点在线段上位于靠近点的四等分点处.22、(1)极大值为,无极小值(2)【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职园林工程技术(园林工程施工)试题及答案
- 2025年高职曲艺表演(曲艺创作技巧)试题及答案
- 2025年高职物流工程(物流工程基础)试题及答案
- 2025年高职(中药资源)中药种植技术推广试题及答案
- 连锁药店管理制度
- 造价咨询企业内部管理制度
- 养老院老人生活设施维修人员职业发展规划制度
- 养老院老人情感慰藉制度
- 养老院服务质量投诉处理制度
- 养老院入住老人福利待遇保障制度
- (二检)厦门市2025届高中毕业班第二次质量检测历史试卷
- 呼吸内科一科一品一特色护理
- 负压冲洗式口腔护理
- 结婚函调报告表
- CJJT164-2011 盾构隧道管片质量检测技术标准
- 倒档变速叉工序卡
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- GB/T 43824-2024村镇供水工程技术规范
- 心力衰竭药物治疗的经济评估与成本效益分析
- QA出货检验日报表
- 校服采购投标方案
评论
0/150
提交评论