版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省漳州第八中学高二数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.2.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m3.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.4.已知等差数列的公差,是与的等比中项,则()A. B.C. D.5.阅读如图所示的程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.326.若圆的半径为,则实数()A. B.-1C.1 D.7.已知等比数列满足,,则()A. B.C. D.8.如图是一个程序框图,执行该程序框图,则输出的n值是()A.2 B.3C.4 D.59.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,且则的实轴长为A.1 B.2C.4 D.810.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.设双曲线()的焦距为12,则()A.1 B.2C.3 D.412.已知数列满足,令是数列的前n项积,,现给出下列四个结论:①;②为单调递增的等比数列;③当时,取得最大值;④当时,取得最大值其中所有正确结论的编号为()A.②④ B.①③C.②③④ D.①③④二、填空题:本题共4小题,每小题5分,共20分。13.若圆柱的高、底面半径均为1,则其表面积为___________14.在数列中,若,则该数列的通项公式__________15.已知,,若,则______16.如图,按照以下规律排列的数阵中,第i行从左向右第j个数记为,如,,则______;令则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)18.(12分)已知抛物线的焦点与双曲线的右焦点重合,双曲线E的渐近线方程为(1)求抛物线C的标准方程和双曲线E的标准方程;(2)若O是坐标原点,直线与抛物线C交于A,B两点,求的面积19.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围20.(12分)设数列满足,数列的前项和为,且(1)求证:数列为等差数列,并求的通项公式;(2)设,若对任意正整数,当时,恒成立,求实数的取值范围.21.(12分)已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.22.(10分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质2、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.3、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A4、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.5、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C6、B【解析】将圆的方程化为标准方程,即可求出半径的表达式,从而可求出的值.【详解】由题意,圆的方程可化为,所以半径为,解得.故选:B.【点睛】本题考查圆的方程,考查学生的计算求解能力,属于基础题.7、D【解析】由已知条件求出公比的平方,然后利用即可求解.【详解】解:设等比数列的公比为,因为等比数列满足,,所以,所以,故选:D.8、B【解析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果.【详解】初始值:,当时,,进入循环;当时,,进入循环;当时,,终止循环,输出的值为3.故选:B9、B【解析】设等轴双曲线的方程为抛物线,抛物线准线方程为设等轴双曲线与抛物线的准线的两个交点,,则,将,代入,得等轴双曲线的方程为的实轴长为故选10、C【解析】先考虑充分性,再考虑必要性即得解.【详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C11、B【解析】根据可得关于的方程,解方程即可得答案.【详解】因为可化为,所以,则.故选:B.【点睛】本题考查已知双曲线的焦距求参数的值,考查函数与方程思想,考查运算求解能力,属于基础题.12、B【解析】求出,即可判断选项①正确;求出,即可选项②错误;求出,利用单调性即可判断选项③正确;求出,即可判断选项④错误,即得解.【详解】解:因为,①所以,,②①②得,,整理得,又,满足上式,所以,因为,所以数列为等差数列,公差为,所以,故①正确;,因为,故数列为等比数列,其中首项,公比为的等比数列,因为,,所以数列为递减的等比数列,故②错误;,因为为单调递增函数,所以当最大时,有最大值,因为,所以时,最大,即时,取得最大值,故③正确;设,由可得,,解得或,又因为,所以时,取得最大值,故④错误;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:14、【解析】由已知可得数列是以为首项,3为公比的等比数列,结合等比数列通项公式即可得解.【详解】解:由在数列中,若,则数列是以为首项,为公比的等比数列,由等比数列通项公式可得,故答案为:.【点睛】本题考查了等比数列通项公式的求法,重点考查了运算能力,属基础题.15、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:16、①.55②.【解析】令易知是首项为,公差为1的等差数列,写出通项公式,再应用累加法求及通项公式,结合求通项公式,进而可得,最后两次应用错位相减法求即可.【详解】由题设知:令,则是首项为,公差为1的等差数列,故,所以,即,由上可得:,则,而,所以,则,所以,,所以,令,则,所以,故,综上,,则.故答案为:,.【点睛】关键点点睛:通过图总结规律,易知是等差数列,应用累加法求,再由求通项公式,最后应用错位相减法求前n项和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.18、(1);(2)【解析】(1)由双曲线的渐近线方程为,可得,继而得到双曲线的右焦点为,即为抛物线的焦点坐标,可得,即得解;(2)联立直线与抛物线,可得,再由直线过抛物线的焦点,故,三角形的高为O到直线的距离,利用点到直线公式,求解即可【小问1详解】由题意,双曲线渐近线方程为:,所以,所以双曲线E的标准方程为:故双曲线故双曲线的右焦点为,所以,,所以【小问2详解】由题意联立,得,又所以因为直线过抛物线的焦点,所以O到直线的距离,19、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为20、(1)证明见解析,;(2)或.【解析】(1)结合与关系用即可证明为常数;求出通项公式后利用累加法即可求的通项公式;(2)裂项相消求,判断单调性求其最大值即可.【小问1详解】当时,得到,∴,当时,是以4为首项,2为公差的等差数列∴当时,当时,也满足上式,.【小问2详解】令,当,因此的最小值为,的最大值为对任意正整数,当时,恒成立,得,即在时恒成立,,解得t<0或t>3.21、(1)证明见解析(2)【解析】(1)直线方程变形后令的系数等于0消去参数即可求得定点坐标.(2)先求出圆心C到直线l距离,然后用勾股定理即可求得弦长.【小问1详解】,联立得:即直线l过定点(.【小问2详解】由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路及沿河景观工程施工组织设计概述
- 中国糖尿病药注射技术
- 2026年深圳市某单位政府项目服务支撑岗工作人员招聘备考题库及一套完整答案详解
- 委托执法培训
- 11《军神》课件模板
- 2026年民族团结进步教育试题含答案
- 2026年杭州银行笔试题库及参考答案
- 上海市滴水湖学校2026年校园招聘32人备考题库及1套参考答案详解
- 辐射安全与防护基础知识-1
- 2026年水务巡查员面试问题含答案
- 邀约来访活动策划方案(3篇)
- 2025年烟台理工学院马克思主义基本原理概论期末考试笔试真题汇编
- 《型材知识介绍》课件
- 幼儿园小班美术《雪花飘飘》课件
- 期末测试卷-2024-2025学年外研版(一起)英语六年级上册(含答案含听力原文无音频)
- 桥架弯制作方法及流程
- DB13(J)-T 298-2019 斜向条形槽保温复合板应用技术规程(2024年版)
- HG/T 3811-2023 工业溴化物试验方法 (正式版)
- (正式版)SHT 3229-2024 石油化工钢制空冷式热交换器技术规范
- 健康政策与经济学
- GB/T 42506-2023国有企业采购信用信息公示规范
评论
0/150
提交评论