2026届广东省广州三校数学高二上期末联考试题含解析_第1页
2026届广东省广州三校数学高二上期末联考试题含解析_第2页
2026届广东省广州三校数学高二上期末联考试题含解析_第3页
2026届广东省广州三校数学高二上期末联考试题含解析_第4页
2026届广东省广州三校数学高二上期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省广州三校数学高二上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.2.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定3.已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.C. D.4.已知空间四边形中,,,,点在上,且,为中点,则等于()A. B.C. D.5.圆与直线的位置关系为()A.相切 B.相离C.相交 D.无法确定6.已知点是双曲线的左焦点,是双曲线右支上一动点,过点作轴垂线并延长交双曲线左支于点,当点向上移动时,的值()A.增大 B.减小C.不变 D.无法确定7.已知直线与直线垂直,则实数a为()A. B.或C. D.或8.直线的倾斜角的大小为()A. B.C. D.9.若曲线表示圆,则m的取值范围是()A. B.C. D.10.若等差数列,其前n项和为,,,则()A.10 B.12C.14 D.1611.已知一个圆锥体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.12.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.14.若圆柱的高、底面半径均为1,则其表面积为___________15.过点且与直线平行的直线的方程是______.16.设,向量,,,且,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程18.(12分)已知椭圆的左、右焦点分别为,,离心率为,过左焦点的直线l与椭圆C交于A,B两点,的周长为8(1)求椭圆C的标准方程;(2)如图,,是椭圆C的短轴端点,P是椭圆C上异于点,的动点,点Q满足,,求证与的面积之比为定值19.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.20.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.21.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.22.(10分)如图,在四棱锥中,,,,,为中点,且平面.(1)求点到平面的距离;(2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A2、B【解析】由,所以.3、C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C4、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B5、C【解析】先计算出直线恒过定点,而点在圆内,所以圆与直线相交.【详解】直线可化为,所以恒过定点.把代入,有:,所以在圆内,所以圆与直线的位置关系为相交.故选:C6、C【解析】令双曲线右焦点为,由对称性可知,,结合双曲线的定义即可得出结果.【详解】令双曲线右焦点为,由对称性可知,,则,为常数,故选:C.7、B【解析】由题可得,即得.【详解】∵直线与直线垂直,∴,解得或.故选:B.8、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选9、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.10、B【解析】由等差数列前项和的性质计算即可.【详解】由等差数列前项和的性质可得成等差数列,,即,得.故选:B.11、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B12、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.14、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:15、【解析】设出直线的方程,代入点的坐标,求出直线的方程.【详解】设过点且与直线平行的直线的方程为,将代入,则,解得:,所以直线的方程为.故答案为:16、3【解析】利用向量平行和向量垂直的性质列出方程组,求出,,再由空间向量坐标运算法则求出,由此能求出【详解】解:设,,向量,,,且,,,解得,,所以,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或所以直线的方程是或.18、(1)(2)证明见解析【解析】(1)根据周长为8,求得a,再根据离心率求解;(2)方法一:设,,得到直线和直线的方程,联立求得Q的横坐标,根据在椭圆上,得到,然后代入Q的横坐标求解;方法二:设直线,的斜率分别为k,,点,,直线的方程为,与椭圆方程联立,求得点P横坐标,再由的直线方程联立,得到P,Q的横坐标的关系求解.【小问1详解】解:∵的周长为8,∴,即,∵离心率,∴,,∴椭圆C的标准方程为【小问2详解】方法一:设,则直线斜率,∵,∴直线斜率,∴直线的方程为:,同理直线的方程为:,联立上面两直线方程,消去y,得,∵在椭圆上,∴,即,∴,∴所以与的面积之比为定值4方法二:设直线,的斜率分别为k,,点,,则直线的方程为,∵,∴直线的方程为,将代入,得,∵P是椭圆上异于点,的点,∴,又∵,即,∴,即,由,得直线的方程为,联立得,∴所以与的面积之比为定值419、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.21、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例函数模型拟合效果更好,然后将代入回归方程中可求结果(3)利用已知数据求出样本标准差s,从而可得非原料成本y服从正态分布,再计算,然后各个数据是否在此范围内,从而可得结论【小问1详解】令,则可转化为,因为,所以,所以,所以,所以y关于x的回归方程为【小问2详解】与的相关系数为因为,所以用反比例函数模型拟合效果更好,把代入回归方程得(元),所以产量为10千件时每件产品的非原料成本约为11元【小问3详解】因为,所以,因为样本标准差为,所以,所以非原料成本y服从正态分布,所以因为在之外,所以需要此非原料成本数据寻找出现异样成本的原因22、(1)(2)线段上存在一点,当时,平面.【解析】(1)设点到平面的距离为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论