版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市白泽湖中学2026届高一上数学期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.2.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A. B.C. D.3.函数的部分图像如图所示,则的值为()A. B.C. D.4.设,,,则a,b,c的大小关系为()A. B.C. D.5.已知一几何体的三视图,则它的体积为A. B.C. D.6.设函数,若,则的取值范围为A. B.C. D.7.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.8.最小值是A.-1 B.C. D.19.已知角终边经过点,则的值分别为A. B.C. D.10.在中,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.12.已知扇形的弧长为,且半径为,则扇形的面积是__________.13.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB相交(包含端点的情况),则实数m的取值范围是________________.14.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________15.化简:=____________16.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)18.已知,且,求的值19.已知定义域为的函数是奇函数.(1)求实数的值;(2)判断的单调性并用定义证明;(3)已知不等式恒成立,求实数的取值范围.20.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.21.已知函数的最小值为1.(1)求的值;(2)求函数的最小正周期和单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.2、C【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围【详解】解:由在上单调递减,得,又由且在上单调递减,得,解得,所以,作出函数且在上的大致图象,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当,即时,联立,即,则,解得:,当时,即,由图象可知,符合条件综上:故选:C3、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.4、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A5、C【解析】所求体积,故选C.6、A【解析】根据对数函数的性质单调递增,,列出不等式,解出即可.【详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,故选A.【点睛】本题主要考查了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.7、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.8、B【解析】∵,∴当sin2x=-1即x=时,函数有最小值是,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题9、C【解析】,所以,,选C.10、D【解析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解.【详解】因为,由可得:,即,所以,所以,所以或,因为,,所以或,所以的形状为等腰三角形或直角三角形,故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.12、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.13、【解析】本道题目先绘图,然后结合图像判断该直线的位置,计算斜率,建立不等式,即可.【详解】要使得与线段AB相交,则该直线介于1与2之间,1号直线的斜率为,2号直线的斜率为,建立不等式关系转化为,所以或解得m范围为【点睛】本道题考查了直线与直线的位置关系,结合图像,判断直线的位置,即可.14、(3,0)【解析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为15、【解析】利用三角函数的平方关系式,化简求解即可【详解】===又,所以,所以=,故填:【点睛】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力16、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.18、【解析】利用同角三角函数的基本关系可求得的值,再结合诱导公式可求得所求代数式的值.【详解】∵,∴,∵,∴所以,∴【点睛】关键点睛:解决三角函数中的给值求值的问题时,关键在于找出待求的角与已知的角之间的关系.19、(1);(2)减函数,证明见解析;(3).【解析】(1)根据可求的值,注意检验.(2)利用增函数的定义可证明在上是减函数.(3)利用函数的奇偶性和单调性可把原不等式化为,利用对数函数的性质可求的取值范围.【详解】(1)是上的奇函数,,得,此时,,故为奇函数,所以.(2)为减函数,证明如下:设是上任意两个实数,且,,,,即,,,,即,在上是减函数.(3)不等式恒成立,.是奇函数,,即不等式恒成立又在上是减函数,不等式恒成立,当时,得,.当时,得,.综上,实数的取值范围是.【点睛】本题考查了函数的奇偶性与单调性,考查了不等式恒成立问题,考查了应用对数函数单调性解与对数有关的不等式,涉及了指数函数与对数函数的图象与性质,体现了转化思想在解题中的运用.20、(1)(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国袋式除尘器市场应用趋势及供需平衡状况分析研究报告
- 2025至2030中国运动健康产业市场增长与竞争格局研究报告
- 2026年西双版纳州生态环境局勐海分局编外人员招聘备考题库附答案详解
- 2025-2030中国中小微企业行业市场供需分析及投资评估规划分析研究报告
- 2025-2030中国高钛渣市场深度调研及未来发展方向预测研究报告
- 中共启东市委组织部2026年校园招聘备考题库完整答案详解
- 井控课件处长培训班
- 上外云间中学2026年教师招聘备考题库及1套完整答案详解
- 2026年淄博一四八医院招聘备考题库及答案详解1套
- 2026年招贤纳士江口县第四幼儿园招聘备考题库附答案详解
- 畜禽屠宰加工工国家职业标准(征求意见稿)
- 电力通信安全培训资料课件
- 上海国安面试题库及答案
- 2025年财务共享服务模式白皮书方案
- 建筑工程交通导改与组织方案
- 2025版新春晚会节目编排与制作合同
- 春天绿化养护知识培训
- 数据中心消防培训课件
- 四川评标专家培训课件
- JJF(蒙) 064-2024 混凝土振动台校准规范
- 地产文案培训课件
评论
0/150
提交评论