版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省凯里一中2026届高二数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.2.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()A.30° B.45°C.60° D.90°3.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.4.若关于x的方程有解,则实数的取值范围为()A. B.C. D.5.在四面体OABC中,,,,则与AC所成角的大小为()A.30° B.60°C.120° D.150°6.若函数,满足且,则()A.1 B.2C.3 D.47.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.8.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知函数(是的导函数),则()A.21 B.20C.16 D.1110.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或11.执行如图所示的程序框图,若输出的的值为,则输入的的值可能为()A.96 B.97C.98 D.9912.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,且满足,则______.14.i为虚数单位,复数______15.已知数列是等差数列,若,则___________.16.在正项等比数列{an}中,若,与的等差中项为12,则等于_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.18.(12分)如图①,在梯形PABC中,,与均为等腰直角三角形,,,D,E分别为PA,PC的中点.将沿DE折起,使点P到点的位置(如图②),G为线段的中点.在图②中解决以下两个问题.(1)求证:平面平面;(2)若二面角为120°时,求CG与平面所成角的正弦值.19.(12分)椭圆的一个顶点为,离心率(1)求椭圆方程;(2)若直线与椭圆交于不同的两点.若满足,求直线的方程20.(12分)某高校自主招生考试分笔试与面试两部分,每部分考试成绩只记“通过”与“不通过”,两部分考试都“通过”者,则考试“通过”,并给予录取.甲、乙两人在笔试中“通过”的概率依次为,在面试中“通过”的概率依次为,笔试和面试是否“通过”是独立的,那么(1)甲、乙两人都参加此高校的自主招生考试,谁获得录取的可能性大?(2)甲、乙两人都参加此高校的自主招生考试,求恰有一人获得录取的概率.21.(12分)如图,在四棱锥中,平面,底面是直角梯形,其中,,,,为棱上的点,且.(1)求证:平面;(2)求二面角的正弦值;(3)设为棱上的点(不与,重合),且直线与平面所成角的正弦值为,求的值.22.(10分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.2、D【解析】作出折叠后的正四棱锥,确定线面关系,从而把异面直线的夹角通过平移放到一个平面内求得.【详解】由题知,折叠后的正四棱锥如图所示,易知K为的四等分点,L为的中点,M为的四等分点,,取的中点N,易证,则异面直线AK和LM所成角即直线AK和KN所成角,在中,,,故故选:D3、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C4、C【解析】将对数方程化为指数方程,用x表示出a,利用基本不等式即可求a的范围【详解】,,当且仅当时取等号,故故选:C5、B【解析】以为空间的一个基底,求出空间向量求的夹角即可判断作答.【详解】在四面体OABC中,不共面,则,令,依题意,,设与AC所成角的大小为,则,而,解得,所以与AC所成角的大小为.故选:B6、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C7、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.8、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键9、B【解析】根据已知求出,即得解.【详解】解:由题得,所以.故选:B10、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒11、D【解析】根据程序框图得出的变换规律后求解【详解】当时,,当时,,当时,,当时,,可得输出的T关于t的变换周期为4,而,故时,输出的值为,故选:D12、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据所给的通项公式,代入求得,并由代入求得,即可求得的值.【详解】数列的前n项和,则,而,,∴,则,故答案为:.14、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.15、8【解析】利用计算可得答案.【详解】设等差数列的公差为,故答案为:8.16、128【解析】先根据条件利用等比数列的通项公式列方程组求出首项和公差,进而可得.【详解】设正项等比数列{an}的公比为,由已知,得,①,又,②,由①②得,故答案为:128.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.18、(1)证明见解析(2)【解析】(1)通过两个线面平行即可证明面面平行(2)以为坐标原点建立直角坐标系,通过空间向量的方法计算线面角的正弦值【小问1详解】如上图所示,在中,因为D,E分别为PA,PC的中点,所以,因为平面,平面,所以平面,连接,交于点,连接,因为与均为等腰直角三角形,,所以,,所以,且,则四边形是平行四边形,所以是中点,且G为线段的中点,所以中,,因为平面,平面,所以平面,又因为平面,,所以平面平面【小问2详解】因为,平面,,所以平面,所以可以以为坐标原点,建立如上图所示的直角坐标系,此时,,,,因为G为线段的中点,所以,所以,,,设平面的法向量为,则有,即,得其中一个法向量,,所以CG与平面所成角的正弦值为19、(1);(2)【解析】(1)首先由椭圆的一个顶点可以求出的值,再根据离心率可得到、的关系,联立即可求得的值,进而得到椭圆的方程;(2)先联立直线与椭圆,结合韦达定理得到线段的中点的坐标,再根据,即可求得的值,进而求得直线的方程【详解】(1)由一个顶点为,离心率,可得,,,解得,,即有椭圆方程为(2)由知点在线段的垂直平分线上,由,消去得,由,得方程的,即方程有两个不相等的实数根设、,线段的中点,则,所以,所以,即,因为,所以直线的斜率为,由,得,所以,解得:,即有直线的方程为20、(1)甲获得录取的可能性大;(2)【解析】(1)利用独立事件的乘法公式求出甲、乙两人被录取的概率并比较大小,即得结果.(2)应用对立事件、独立事件的概率求法,结合互斥事件的加法公式求恰有一人获得录取的概率.【小问1详解】记“甲通过笔试”为事件,“甲通过面试”为事件,“甲获得录取”为事件A,“乙通过笔试”为事件,“乙通过面试”为事件,“乙获得录取”为事件B,则,,即,所以甲获得录取的可能性大.【小问2详解】记“甲乙两人恰有一人获得录取”为事件C,则.21、(1)证明见解析;(2);(3).【解析】(1)由已知证得,,,以为坐标原点,建立如图所示的空间直角坐标系,根据向量垂直的坐标表示和线面垂直的判定定理可得证;(2)根据二面角的空间向量求解方法可得答案;(3)设,表示点Q,再利用线面角的空间向量求解方法,建立方程解得,可得答案.【详解】(1)因为平面,平面,平面,所以,,又因为,则以为坐标原点,建立如图所示的空间直角坐标系,由已知可得,,,,,,所以,,,因为,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作为平面的法向量,设平面的法向量因为,.所以,即,不妨设,得.,又由图示知二面角为锐角,所以二面角的正弦值为.(3)设,即,,所以,即,因为直线与平面所成角的正弦值为,所以,即,解得,即.【点睛】本题考查利用空间向量求线面垂直、线面角、二面角的求法,向量法求二面角的步骤:建、设、求、算、取:1、建:建立空间直角坐标系,以三条互相垂直的垂线的交点为原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国嘧啶核苷行业市场前景预测及投资价值评估分析报告
- 2026年1月24日山东省选调生面试真题及答案解析(下午卷)
- 2026年生物基可降解塑料项目投资计划书
- 牛羊贩运人员培训课件教学
- 环境局公文写作培训课件
- 小学科学教师的个人年度工作总结
- 社区就业与再就业年度工作总结
- 2025年国家公务员录用考试公共基础知识全真模拟题库及答案
- 2025年全国高压电工作业人员操作证考试题库(含答案)
- 土方工程三级安全教育试题(附答案)
- 2025年公务员时事政治热点试题解析+答案
- 免疫联合治疗的生物样本库建设
- 项目管理沟通矩阵及问题跟进器
- 交通运输企业人力资源管理中存在的问题及对策
- 蒂森电梯安全质量培训
- 设备供货进度计划及保证措施
- 纯化水取样课件
- 2025年四川单招护理试题及答案
- 钢梁现场安装施工质量通病、原因分析及应对措施
- 山东省青岛市市南区2024-2025学年六年级上学期期末考试数学试卷
- 安全生产责任追究细则
评论
0/150
提交评论