版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省金昌市永昌县第四中学高二数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点到准线的距离为()A. B.C. D.12.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.63.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.4.如果直线与直线垂直,那么的值为()A. B.C. D.25.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见首日行里数,请公仔细算相还.”其大意为:有一个人走里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,恰好走了天到达目的地,则该人第一天走的路程为()A.里 B.里C.里 D.里6.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.127.已知数列满足,,数列的前n项和为,若,,成等差数列,则n=()A.6 B.8C.16 D.228.双曲线的渐近线的斜率是()A.1 B.C. D.9.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或10.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.411.已知,记M到x轴的距离为a,到y轴的距离为b,到z轴的距离为c,则()A. B.C. D.12.已知椭圆(a>b>0)的离心率为,则=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.14.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________15.抛物线的准线方程为_____16.已知函数,若有两个零点,则的范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.18.(12分)已知圆C的圆心在x轴上,且经过点,.(1)求圆C的标准方程;(2)过斜率为的直线与圆C相交于M,N,两点,求弦MN的长.19.(12分)命题p:直线l:与圆C:有公共点,命题q:双曲线的离心率(1)若p,q均为真命题,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围20.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.21.(12分)如图,四棱柱的底面为正方形,平面,,,点在上,且.(1)求证:;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.22.(10分)新疆长绒棉品质优良,纤维柔长,被世人誉为“棉中极品”,产于我国新疆的吐鲁番盆地、塔里木盆地的阿克苏、喀什等地.棉花的纤维长度是评价棉花质量的重要指标之一,在新疆某地区成熟的长绒棉中随机抽测了一批棉花的纤维长度(单位:mm),将样本数据制成频率分布直方图如下:(1)求的值;(2)估计该样本数据的平均数(同一组中的数据用该组数据区间的中点值为代表);(3)根据棉花纤维长度将棉花等级划分如下:纤维长度小于30mm大于等于30mm,小于40mm大于等于40mm等级二等品一等品特等品从该地区成熟的棉花中随机抽测两根棉花的纤维长度,用样本的频率估计概率,求至少有一根棉花纤维长度达到特等品的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.2、D【解析】利用正态分布的计算公式:,【详解】且又故选:D3、D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D4、A【解析】根据两条直线垂直列方程,化简求得的值.【详解】由于直线与直线垂直,所以.故选:A5、C【解析】建立等比数列的模型,由等比数列的前项和公式求解【详解】记第天走的路程为里,则是等比数列,,,故选:C6、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.7、D【解析】利用累加法求得列的通项公式,再利用裂项相消法求得数列的前n项和为,再根据,,成等差数列,得,从而可得出答案.【详解】解:因为,且,所以当时,,因为也满足,所以.因为,所以.若,,成等差数列,则,即,得.故选:D.8、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B9、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D10、A【解析】由直线与圆相切可得,再利用基本不等式即求.【详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A11、C【解析】分别求出点M在x轴,y轴,z轴上的投影点的坐标,再借助空间两点间距离公式计算作答.【详解】设点M在x轴上的投影点,则,而x轴的方向向量,由得:,解得,则,设点M在y轴上的投影点,则,而y轴的方向向量,由得:,解得,则,设点M在z轴上的投影点,则,而z轴的方向向量,由得:,解得,则,所以.故选:C12、D【解析】由离心率得,再由转化为【详解】因为,所以8a2=9b2,所以故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】既然为真,那么就是为真,即p是假,并且q是真,根据椭圆和双曲线的定义即可解出。【详解】∵为真,∴p为假,q为真;考虑p为真的情况:解得……①;由于p为假,∴或;由于q为真,∴,即……②;由①和②得:;故答案为:.14、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:15、【解析】本题利用抛物线的标准方程得出抛物线的准线方程【详解】由抛物线方程可知,抛物线的准线方程为:故答案为【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题16、【解析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)利用面面垂直和线面垂直的性质定理可证得;由菱形边长和角度的关系可证得;利用线面垂直的判定定理可证得结论;(2)以为坐标原点建立起空间直角坐标系,利用空间向量法可求得二面角的余弦值.详解】(1)平面平面,平面平面,且平面,平面,平面,,四边形为菱形且为中点,,又,,又,,平面,,平面.(2)以为坐标原点可建立如下图所示的空间直角坐标系,设,则,,,,,,则,,,设平面的法向量,则,令,则,,,设平面的法向量,则,令,则,,,,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面垂直关系的证明、空间向量法求解二面角的问题;涉及到面面垂直的性质定理、线面垂直的判定与性质定理的应用,属于常考题型.18、(1)(2)【解析】(1)由圆的性质可得圆心在线段的垂直平分线上,由题意求出的垂直平分线方程,从而得出圆心坐标,再求出半径,得到答案.(2)由题意先求出满足条件的直线方程,求出圆心到直线的距离,由垂经定理可得圆的弦长.【小问1详解】由题意设圆C的标准方程为设的中点为,则,由圆的性质可得则,又,所以则直线的方程为,即则圆C的圆心在直线上,即,故所以圆心,半径所以圆C的标准方程为【小问2详解】过斜率为的直线方程为:圆心到该直线的距离为所以19、(1),;(2).【解析】(1)求出,成立的等价条件,即可求实数的取值范围;(2)若“”为假命题,“”为真命题,则、一真一假,当真假时,求出的取值范围,当假真时,求出的取值范围,然后取并集即可得答案【小问1详解】若命题为真命题,则,解得:,若命题为真命题,则且,,解得,∴,均为真命题,实数的取值范围是,;【小问2详解】若为真,为假,则、一真一假;①当真假时,即“”且“或”,则此时的取值范围是;当假真时,即“或”且“”,则此时的取值范围是;综上,的取值范围是20、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.21、(1)证明见解析(2)(3)【解析】(1)以为原点,所在的直线为轴的正方向建立空间直角坐标系,求出平面的一个法向量可得,即平面,再由线面垂直的性质可得答案;(2)设直线与平面所成角的为,可得答案;(3)由二面角的向量求法可得答案.【小问1详解】以为原点,所在的直线为轴的正方向建立空间直角坐标系,则,,,,,所以,,,设平面的一个法向量为,所以,即,令,则,所以,所以,所以平面,平面,所以.【小问2详解】,所以,由(1)平面的一个法向量为,设直线与平面所成角的为,所以直线与平面所成角的正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通设施养护维修制度
- 2026湖北省定向西北工业大学选调生招录参考题库附答案
- 2026湖南财政经济学院招聘劳务派遣性质工作人员参考题库附答案
- 2026福建泉州市面向北京科技大学选优生选拔引进参考题库附答案
- 2026福建省面向华中师范大学选调生选拔工作考试备考题库附答案
- 2026福建福州第十九中学招聘编外行政人员(劳务派遣)1人考试备考题库附答案
- 2026西藏林芝市察隅县农村公益电影放映人员招聘1人备考题库附答案
- 2026辽宁大连产业园社招招聘备考题库附答案
- 2026陕西省面向南开大学招录选调生备考题库附答案
- 2026鲁南技师学院第一批招聘教师8人参考题库附答案
- GM-T 0130-2023 基于SM2算法的无证书及隐式证书公钥机制
- 美术教师季度考核总结
- GB/T 4074.2-2024绕组线试验方法第2部分:尺寸测量
- 液氨储罐区安全评价
- 生物必修一-高中生物课件
- 慢性肾脏病课件
- TOC制约法纵览高德拉特企管公司
- 配电网工程施工方案模板
- 港口集装箱运输AGV项目规划设计方案
- YY/T 1919-2023超声造影成像性能试验方法
- 国际私法(鲁东大学)智慧树知到课后章节答案2023年下鲁东大学
评论
0/150
提交评论