版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省西宁市大通回族土族自治县2026届高一数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)2.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流3.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④4.圆与直线相交所得弦长为()A.1 B.C.2 D.25.已知角的终边经过点P,则()A. B.C. D.6.已知函数(,且)的图象恒过点P,若角的终边经过点P,则()A. B.C. D.7.函数()A. B.C. D.8.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.49.函数,对任意的非零实数,关于的方程的解集不可能是A B.C. D.10.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则满足的实数的取值范围是__12.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________13.某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________14.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.15.已知函数是定义在上的奇函数,当时的图象如下所示,那么的值域是_______16.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.18.设函数的定义域为,函数的定义域为(1)求;(2)若,求实数的取值范围19.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围20.某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系:,.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于,则在哪个时间段实验室需要降温?21.已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记的值域分别为集合,设,若是成立的必要条件,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【点睛】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.2、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.3、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.4、D【解析】利用垂径定理可求弦长.【详解】圆的圆心坐标为,半径为,圆心到直线的距离为,故弦长为:,故选:D.5、B【解析】根据三角函数的定义计算,即可求得答案.【详解】角终边过点,,,故选:B.6、A【解析】由题可得点,再利用三角函数的定义即求.【详解】令,则,所以函数(,且)的图象恒过点,又角的终边经过点,所以,故选:A.7、A【解析】由于函数为偶函数又过(0,0),排除B,C,D,所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.8、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题9、D【解析】由题意得函数图象的对称轴为设方程的解为,则必有,由图象可得是平行于x轴的直线,它们与函数的图象必有交点,由函数图象的对称性得的两个解要关于直线对称,故可得;同理方程的两个解也要关于直线对称,同理从而可得若关于的方程有一个正根,则方程有两个不同的实数根;若关于的方程有两个正根,则方程有四个不同的实数根综合以上情况可得,关于的方程的解集不可能是.选D非选择题10、B【解析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等12、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次13、4050【解析】设每辆车的月租金定为元,则租赁公司的月收益:当时,最大,最大值为,即当每车辆的月租金定为元时,租赁公司的月收益最大,最大月收益是,故答案为.【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及几何概型概率公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.解答本题的关键是:将租赁公司的月收益表示为关于每辆车的月租金的函数,然后利用二次函数的性质解答.14、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意15、【解析】分析:通过图象可得时,函数的值域为,根据函数奇偶性的性质,确定函数的值域即可.详解:∵当时,函数单调递增,由图象知,当时,在,即此时函数也单调递增,且,∵函数是奇函数,∴,∴,即,∴的值域是,故答案为点睛:本题主要考查函数值域的求法,利用函数奇偶性的性质进行转化是解决本题的关键.16、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解析】(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].18、(1);(2).【解析】(1)由题知,即得;(2)根据,得,即求.【小问1详解】由题知,解得:,∴.【小问2详解】由题知,若,则,,实数的取值范围是.19、(1)(2)【解析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.20、(Ⅰ);(Ⅱ)从中午点到晚上点.【解析】(Ⅰ)利用辅助角公式化简函数的解析式为,由此可得出实验室这一天的最大温差;(Ⅱ)由,得出,令,得到,解此不等式即可得出结论.【详解】(Ⅰ),.因此,实验室这一天的最大温差为;(Ⅱ)当时,,令,得,所以,解得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GAT 2000.130-2016公安信息代码 第130部分:媒体级别代码》专题研究报告
- 《GA 240.19-2000刑事犯罪信息管理代码 第19部分 作案原因代码》专题研究报告
- 企业知识产权管理机构及制度
- 2025年核能安全防护操作手册
- 环保产业污染治理培训手册
- 医疗保险业务操作规范(标准版)
- 小儿推拿考试题及答案
- 2025 小学三年级科学下册水的三态变化生活应用课件
- 消防安全题库及答案
- 飞机试飞设备安装调试工春节假期安全告知书
- 劳务分红保密协议书
- 2022年考研英语一真题及答案解析
- 硫培非格司亭二级预防非小细胞肺癌化疗后中性粒细胞减少症的疗效和安全性临床研究
- 八年级下册冀教版单词表
- 数学-华中师大一附中2024-2025高一上学期期末试卷和解析
- 某露天矿山剥离工程施工组织设计方案
- 2024工程项目工序质量控制标准
- JGJ-T188-2009施工现场临时建筑物技术规范
- 互联网+物流平台项目创办商业计划书(完整版)
- 家庭学校社会协同育人课件
- 基于python-的车牌识别
评论
0/150
提交评论