2026届山西省同煤二中联盟体高二上数学期末监测试题含解析_第1页
2026届山西省同煤二中联盟体高二上数学期末监测试题含解析_第2页
2026届山西省同煤二中联盟体高二上数学期末监测试题含解析_第3页
2026届山西省同煤二中联盟体高二上数学期末监测试题含解析_第4页
2026届山西省同煤二中联盟体高二上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省同煤二中联盟体高二上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.922.“直线的斜率不大于0”是“直线的倾斜角为钝角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.4.函数,则的值为()A B.C. D.5.已知空间向量,,,若,,共面,则m+2t=()A.-1 B.0C.1 D.-66.若直线与直线垂直,则()A.6 B.4C. D.7.设函数,则曲线在点处的切线方程为()A. B.C. D.8.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.9.如图是函数的导数的图象,则下面判断正确的是()A.在内是增函数B.在内是增函数C.在时取得极大值D.在时取得极小值10.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.511.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.12.已知且,则的值为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.4与16的等比中项是________.14.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________15.已知抛物线C:y2=8x的焦点为F,直线l过点F与抛物线C交于A,B两点,以F为圆心的圆交线段AB于C,D两点(从上到下依次为A,C,D,B),若,则该圆的半径r的取值范围是____________.16.已知正三棱台上、下底面边长分别为1和2,高为1,则这个正三棱台的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,短轴长为2(1)求椭圆的方程;(2)设过点且斜率为的直线与椭圆交于不同的两点,,求当的面积取得最大值时的值18.(12分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.19.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由20.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.21.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和22.(10分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.2、B【解析】直线倾斜角的范围是[0°,180°),直线斜率为倾斜角(不为90°)的正切值,据此即可判断求解.【详解】直线的斜率不大于0,则直线l斜率可能等于零,此时直线倾斜角为0°,不为钝角,故“直线的斜率不大于0”不是“直线的倾斜角为钝角”充分条件;直线的倾斜角为钝角时,直线的斜率为负,满足直线的斜率不大于0,即“直线的倾斜角为钝角”是“直线的斜率不大于0”的充分条件,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要条件;综上,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要不充分条件.故选:B.3、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.4、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B5、D【解析】根据向量共面列方程,化简求得.【详解】,所以不共线,由于,,共面,所以存在,使,即,,,,,即.故选:D6、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.7、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A8、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.9、B【解析】根据图象判断的单调性,由此求得的极值点,进而确定正确选项.【详解】由图可知,在区间上,单调递减;在区间上,单调递增.所以不是的极值点,是的极大值点.所以ACD选项错误,B选项正确.故选:B10、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.11、A【解析】设出双曲线的方程,根据已知条件列出方程组即可求解.【详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.12、C【解析】由空间向量数量积的坐标运算求解【详解】由已知,解得故选:C二、填空题:本题共4小题,每小题5分,共20分。13、±8【解析】解析由G2=4×16=64得G=±8.答案±814、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.15、【解析】设出直线的方程为,代入抛物线方程,消去,可得关于的二次方程,运用韦达定理及抛物线的定义,化简计算可求解.【详解】抛物线C:y2=8x的焦点为,设以为圆心的圆的半径为,可知,,设,直线的方程为,则,代入抛物线方程,可得,即有,,,,即,所以.故答案为:16、【解析】先计算两个底面的面积,再由体积公式计算即可.【详解】上底面的面积为,下底面的面积为,则这个正三棱台的体积为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由短轴长得,由离心率处也的关系,从而可求得,得椭圆方程;(2)设,,直线的方程为,代入椭圆方程应用韦达定理得,由弦长公式得弦长,求出原点到直线的距离,得出三角形面积为的函数,用换元法,基本不等式求得最大值,得值【详解】解:(1)由题意得,,所以,,椭圆的方程为(2)直线的方程为,代入椭圆的方程,整理得由题意,,设,则,弦长,点到直线的距离,所以的面积,令,则,当且仅当时取等号.所以,对应的,可解得,满足题意18、(1);(2)证明见解析.【解析】(1)根据已知条件列出关于a、b、c的方程组求解即可;(2)设,代入,利用韦达定理,通过,结合,转化求解即可【小问1详解】【小问2详解】设,设,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴为定值19、(1).(2).【解析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.20、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.21、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和22、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,设所求圆的圆心为,半径为,得到,利用圆的垂径定理列出方程求得的值,即可求解.【小问1详解】解:由直线和的交点为P,联立方程组,解得,即,因为直线与直线垂直,所以直线的斜率为,所以过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论