河北省承德市第一中学2026届数学高三上期末考试试题含解析_第1页
河北省承德市第一中学2026届数学高三上期末考试试题含解析_第2页
河北省承德市第一中学2026届数学高三上期末考试试题含解析_第3页
河北省承德市第一中学2026届数学高三上期末考试试题含解析_第4页
河北省承德市第一中学2026届数学高三上期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省承德市第一中学2026届数学高三上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,,则()A. B. C. D.2.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.5.在函数:①;②;③;④中,最小正周期为的所有函数为()A.①②③ B.①③④ C.②④ D.①③6.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A. B. C. D.7.若复数(为虚数单位),则()A. B. C. D.8.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A. B. C. D.9.设函数,则,的大致图象大致是的()A. B.C. D.10.已知集合,集合,则等于()A. B.C. D.11.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A. B.C. D.12.已知实数满足则的最大值为()A.2 B. C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:①的值域为;②;③;④其中正确的结论是_______(写出所有正确的结论的序号)14.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.15.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.16.三棱柱中,,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.18.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.19.(12分)求下列函数的导数:(1)(2)20.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.21.(12分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数列满足,求数列的前2020项的和.22.(10分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.2、C【解析】

先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.3、A【解析】

利用已知条件画出几何体的直观图,然后求解几何体的体积.【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.4、C【解析】

根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.5、A【解析】逐一考查所给的函数:,该函数为偶函数,周期;将函数图象x轴下方的图象向上翻折即可得到的图象,该函数的周期为;函数的最小正周期为;函数的最小正周期为;综上可得最小正周期为的所有函数为①②③.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.6、A【解析】

每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.7、B【解析】

根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.8、C【解析】

根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,,当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.9、B【解析】

采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.10、B【解析】

求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.11、C【解析】

作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.12、B【解析】

作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②【解析】

根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.【详解】对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;对于④,由定义可知,所以④错误;综上可知,正确的为②.故答案为:②.【点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.14、【解析】

根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.15、2【解析】

由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.16、【解析】

分析题意可知,三棱柱为正三棱柱,所以三棱柱的中心即为外接球的球心,设棱柱的底面边长为,高为,则三棱柱的侧面积为,球的半径表示为,再由重要不等式即可得球表面积的最小值【详解】如下图,∵三棱柱为正三棱柱∴设,∴三棱柱的侧面积为∴又外接球半径∴外接球表面积.故答案为:【点睛】考查学生对几何体的正确认识,能通过题意了解到题目传达的意思,培养学生空间想象力,能够利用题目条件,画出图形,寻找外接球的球心以及半径,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18、(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;(Ⅱ)取的中点,连接、,以、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法能求出二面角的余弦值.【详解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中点,连接、,是正方形,易知、、两两垂直,以点为坐标原点,以、、所在直线分别为、、轴建立如图所示的空间直角坐标系,在中,,,,、、、,设平面的一个法向量,,,由,得,令,则,,.设平面的一个法向量,,,由,得,取,得,,得.,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.19、(1);(2).【解析】

(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果.【详解】(1)令,,则,而,,故.(2)令,,则,而,,故,化简得到.【点睛】本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.20、(1).x2+y2=1.(2)16【解析】

(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【详解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.21、(1),;(2).【解析】

(1)根据题意同时利用等差、等比数列的通项公式即可求得数列和的通项公式;(2)求出数列的通项公式,再利用错位相减法即可求得数列的前2020项的和.【详解】(1)依题意得:,所以,所以解得设等比数列的公比为,所以又(2)由(1)知,因为①当时,②由①②得,,即,又当时,不满足上式,.数列的前2020项的和设③,则④,由③④得:,所以,所以.【点睛】本题考查等差数列和等比数列的通项公式、性质,错位相减法求和,考查学生的逻辑推理能力,化归与转化能力及综合运用数学知识解决问题的能力.考查的核心素养是逻辑推理与数学运算.是中档题.22、(1);(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论