2026届杭州高级中学高二上数学期末联考试题含解析_第1页
2026届杭州高级中学高二上数学期末联考试题含解析_第2页
2026届杭州高级中学高二上数学期末联考试题含解析_第3页
2026届杭州高级中学高二上数学期末联考试题含解析_第4页
2026届杭州高级中学高二上数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届杭州高级中学高二上数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与双曲线相交,则的取值范围是A. B.C. D.2.命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是()A.a≥4 B.a≤4C.a≥5 D.a≤53.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.5224.已知曲线,则曲线W上的点到原点距离的最小值是()A. B.C. D.5.若椭圆上一点到C的两个焦点的距离之和为,则()A.1 B.3C.6 D.1或36.命题“”的一个充要条件是()A. B.C. D.7.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.8.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.9.如果向量,,共面,则实数的值是()A. B.C. D.10.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.111.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;12.在等比数列中,若,则公比()A. B.C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.若圆与圆相交,则的取值范围是__________.14.直线被圆所截得的弦的长为_____15.若直线与平行,则实数________.16.已知正数满足,则的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围18.(12分)若是双曲线的两个焦点.(1)若双曲线上一点到它的一个焦点的距离等于10,求点到另一个焦点距离;(2)如图若是双曲线左支上一点,且,求的面积.19.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..20.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且时,求直线l的方程.21.(12分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;22.(10分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.2、C【解析】先要找出命题为真命题的充要条件,从集合的角度充分不必要条件应为的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],恒成立即只需,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为,而要找的一个充分不必要条件即为集合的真子集,由选择项可知C符合题意.故选:C3、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.4、A【解析】化简方程,得到,求出的范围,作出曲线的图形,通过图象观察,即可得到原点距离的最小值详解】解:即为,两边平方,可得,即有,则作出曲线的图形,如下:则点与点或的距离最小,且为故选:A5、B【解析】讨论焦点的位置利用椭圆定义可得答案.【详解】若,则由得(舍去);若,则由得故选:B.6、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D7、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题8、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.9、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.10、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题11、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B12、C【解析】由题得,化简即得解.【详解】因为,所以,所以,解得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆心距小于两半径之和,大于两半径之差的绝对值列出不等式解出即可.【详解】圆的圆心为原点,半径为,圆,即的圆心为,半径为,由于两圆相交,故,即,解得,即的取值范围是,故答案为:14、【解析】圆转化为标准式方程,圆心到直线的距离为,圆的半径为,因此所求弦长为考点:1.圆的方程;2.直线被圆截得的弦长的求法;15、【解析】根据两直线平行可得出关于实数的等式与不等式,即可解得实数的值.【详解】因为,则,解得.故答案为:.16、8【解析】利用“1”代换,结合基本不等式求解.【详解】因为,,所以,当且仅当,即时等号成立,所以当时,取得最小值8.故答案为:8.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)求出圆心到直线的距离,再由垂径定理求弦长;(2)由圆心到直线的距离大于半径列式求解的范围【详解】解:(1)圆,圆心为,半径,圆心到直线的距离为,弦长(2)若直线与圆无公共点,则圆心到直线的距离大于半径解得或18、(1)(2)【解析】(1)利用双曲线定义,根据点到一个焦点的距离求点到另一个焦点的距离即可;(2)先根据定义得到,两边平方求得,即证,,再计算直角三角形面积即可.【小问1详解】是双曲线的两个焦点,则,点M到它的一个焦点的距离等于10,设点到另一个焦点的距离为,则由双曲线定义可知,,解得或(舍去)即点到另一个焦点的距离为;【小问2详解】P是双曲线左支上的点,则,则,而,所以,即,所以为直角三角形,,所以.19、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视力损伤指数y满足的函数关系式即可求解.【小问1详解】解:由表格数据得:,,,,所以线性回归方程为;【小问2详解】解:小明的视力损伤指数,所以,估计小明视力的下降值为0.3.20、(1);(2)或.【解析】(1)根据圆心到直线的距离d等于圆的半径r即可求得答案;(2)由并结合(1)即可求得答案.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直线:距离,即,可得:.【小问2详解】由(1)知圆心到直线的距离,因为,即,解得:,所以,整理可得:,解得:或,则直线的方程为或.21、(1)(2)【解析】(1)根据抛物线过点,且,利用抛物线的定义求解;(2)设,联立,根据,由,结合韦达定理求解.【小问1详解】解:由抛物线过点,且,得所以抛物线方程为;【小问2详解】设,联立得,,,,则,,即,解得或,又当时,直线与抛物线的交点中有一点与原点重合,不符合题意,故舍去;所以实数的值为.22、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),设平面的法向量为=(x,y,z),则,取z=1,得平面的一个法向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论