版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁第二中学2026届数学高一上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,集合,,则等于A. B.{4}C.{2,4} D.{2,4,6}2.已知幂函数的图象过点(4,2),则()A.2 B.4C.2或-2 D.4或-43.将函数图象向左平移个单位,所得函数图象的一个对称中心是()A. B.C. D.4.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)5.已知函数f(x)=3x A. B.C. D.6.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.7.已知角α的终边经过点,则()A. B.C. D.8.下列函数中,既是偶函数又在单调递增的函数是()A. B.C. D.9.已知函数的部分函数值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函数的一个零点的近似值(精确度为0.01)为()A.0.55 B.0.57C.0.65 D.0.710.在线段上任取一点,则此点坐标大于1的概率是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则实数_________12.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________13.中,若,则角的取值集合为_________.14.若函数,则_________;不等式的解集为__________15.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.16.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求值:(1);(2).18.定义在上的奇函数,已知当时,(1)求在上的解析式;(2)若时,不等式恒成立,求实数的取值范围19.已知函数(1)当时,求该函数的值域;(2)求不等式的解集;(3)若存在,使得不等式成立,求的取值范围20.已知函数的图象过点,且相邻的两个零点之差的绝对值为6(1)求的解析式;(2)将的图象向右平移3个单位后得到函数的图象若关于x的方程在上有解,求实数a的取值范围.21.如图,正方体中,点,分别为棱,的中点.(1)证明:平面;(2)证明:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由并集与补集的概念运算【详解】故选:C2、B【解析】设幂函数代入已知点可得选项.【详解】设幂函数又函数过点(4,2),,故选:B.3、D【解析】先由函数平移得解析式,再令,结合选项即可得解.【详解】将函数图象向左平移个单位,可得.令,解得.当时,有对称中心.故选D.【点睛】本题主要考查了函数的图像平移及正弦型三角函数的对称中心的求解,考查了学生的运算能力,属于基础题.4、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.5、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B6、C【解析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.7、D【解析】推导出,,,再由,求出结果【详解】∵角的终边经过点,∴,,,∴故选:D8、B【解析】由奇偶性排除,再由增减性可选出正确答案.【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增.故选:B9、B【解析】根据给定条件直接判断函数的单调性,再结合零点存在性定理判断作答.【详解】函数在R上单调递增,由数表知:,由零点存在性定义知,函数的零点在区间内,所以函数的一个零点的近似值为.故选:B10、B【解析】设“所取点坐标大于1”为事件A,则满足A的区间为[1,3]根据几何概率的计算公式可得,故选B.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分和求解即可.【详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.12、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷13、【解析】△ABC中,由tanA=1,求得A的值【详解】∵△ABC中,tanA=1>0,故∴A=故答案为【点睛】本题主要考查三角函数的化简,及与三角形的综合,应注意三角形内角的范围14、①.②.【解析】代入求值即可求出,分与两种情况解不等式,最后求并集即可.【详解】,当时,,所以,解得:;当时,,解得:,所以,综上:.故答案为:,15、-8【解析】答案:-8.解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角.16、##0.25【解析】结合相互独立事件的乘法公式直接计算即可.【详解】记师傅加工两个零件都是精品的概率为,则,徒弟加工两个零件都是精品的概率为,则师徒二人各加工两个零件都是精品的概率为,求得,故徒弟加工两个零件都是精品的概率为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)112(2)3【解析】(1)依据幂的运算性质即可解决;(2)依据对数的运算性质及换底公式即可解决.【小问1详解】【小问2详解】18、(1);(2)【解析】(1)由函数是奇函数,求得,再结合函数的奇偶性,即可求解函数在上的解析式;(2)把,不等式恒成立,转化为,构造新函数,结合基本初等函数的性质,求得函数的最值,即可求解【详解】解:(1)由题意,函数是定义在上的奇函数,所以,解得,又由当时,,当时,则,可得,又是奇函数,所以,所以当时,(2)因为,恒成立,即在恒成立,可得在时恒成立,因为,所以,设函数,根据基本初等函数的性质,可得函数在上单调递减,因为时,所以函数的最大值为,所以,即实数的取值范围是【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的恒成立问题的求解,其中解答中熟记函数的奇偶性,以及利用分离参数,结合函数的最值求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题19、(1);(2)或;(3)【解析】(1)令,函数化为,结合二次函数的图象与性质,即可求解;(2)由题意得到,令,得到,求得不等式的解集,进而求得不等式的解集,得到答案;(3)令,转化为存在使得成立,结合函数的单调性,求得函数最小值,即可求解.【详解】(1)令,因为,则,函数化为,,所以在上单调递减,在上单调递增,所以当时,取到最小值为,当时,取到最大值为5,故当时,函数的值域为(2)由题意,不等式,即,令,则,即,解得或,当时,即,解得;当时,即,解得,故不等式的解集为或(3)由于存在使得不等式成立,令,,则,即存在使得成立,所以存在使得成立因为函数在上单调递增,也在上单调递增,所以函数在上单调递增,它的最小值为0,所以,所以的取值范围是20、(1)(2)【解析】(1)结合正弦函数性质,相邻两个零点之差为函数的半个周期,由此得,代入已知点坐标可求得,得解析式;(2)由图象变换得,求出时的的值域,由属于这个值域可得的范围【详解】(1)设的最小正周期为T,因为相邻的两个零点之差的绝对值为6,所以,所以.因为的图象经过点,所以,又因为,所以.所以.(2)由(1)可得.当时,,则.因为关于x的方程在上有解,所以,解得或.所以a的取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题会议事制度
- 合山市经济贸易和科学技术局招聘备考题库(2025年12月30日)带答案详解
- 二手车贷款销售培训课件
- 小可爱驾驶员安全课件
- 2026年温岭市农业农村和水利局招聘编外工作人员备考题库及参考答案详解1套
- 2025-2030中国外周置入中心导管行业市场发展趋势与前景展望战略研究报告
- 中国人民银行所属企业网联清算有限公司2026年度校园招聘26人备考题库带答案详解
- 2025-2030汽车减震器行业并购重组机会及投融资战略研究咨询报告
- 东莞市公安局沙田分局2025年公开招聘警务辅助人员备考题库(第8期)完整参考答案详解
- 机关保密教育课件知识题
- 呼吸内科一科一品一特色护理
- 负压冲洗式口腔护理
- 结婚函调报告表
- CJJT164-2011 盾构隧道管片质量检测技术标准
- 倒档变速叉工序卡
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- GB/T 43824-2024村镇供水工程技术规范
- 心力衰竭药物治疗的经济评估与成本效益分析
- QA出货检验日报表
- 校服采购投标方案
- 中外建筑史课件
评论
0/150
提交评论