2026届上海中学数学高二上期末监测试题含解析_第1页
2026届上海中学数学高二上期末监测试题含解析_第2页
2026届上海中学数学高二上期末监测试题含解析_第3页
2026届上海中学数学高二上期末监测试题含解析_第4页
2026届上海中学数学高二上期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海中学数学高二上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.62.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.3.在三棱锥中,平面;记直线与直线所成的角为,直线与平面所成的角为,二面角的平面角为,则()A. B.C. D.4.在抛物线上,横坐标为4的点到焦点的距离为5,则p的值为()A. B.2C.1 D.45.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.16.设函数,则曲线在点处的切线方程为()A. B.C. D.7.已知直线过点,,则该直线的倾斜角是()A. B.C. D.8.圆关于直线对称圆的标准方程是()A. B.C. D.9.如图所示,在三棱锥中,E,F分别是AB,BC的中点,则等于()A. B.C. D.10.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.2011.已知命题:,使;命题:,都有,则下列结论正确的是()A.命题“”是真命题: B.命题“”是假命题:C.命题“”是假命题: D.命题“”是假命题12.已知集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线平行,则________.14.设,则_________15.已知点和,M是椭圆上一动点,则的最大值为________.16.已知抛物线的焦点F在直线上,过点F的直线l与抛物线C相交于A,B两点,O为坐标原点,△的面积是△面积的4倍,则直线l的方程为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD是边长为1的菱形,且,侧棱,,M是PC的中点,设,,(1)试用,,表示向量;(2)求BM的长18.(12分)设,为双曲线:(,)的左、右顶点,直线过右焦点且与双曲线的右支交于,两点,当直线垂直于轴时,△为等腰直角三角形(1)求双曲线的离心率;(2)若双曲线左支上任意一点到右焦点点距离的最小值为3,①求双曲线方程;②已知直线,分别交直线于,两点,当直线倾斜角变化时,以为直径的圆是否过轴上的定点,若过定点,求出定点的坐标;若不过定点,请说明理由19.(12分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由20.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分21.(12分)设关于x的不等式的解集为A,关于x的不等式的解集为B(1)求集合A,B;(2)若是的必要不充分条件,求实数m的取值范围22.(10分)已知圆:与x轴负半轴交于点A,过A的直线交抛物线于B,C两点,且.(1)证明:点C的横坐标为定值;(2)若点C在圆内,且过点C与垂直的直线与圆交于D,E两点,求四边形ADBE的面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.2、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D3、A【解析】先得到三棱锥的每一个面都是直角三角形,然后可得与平面所成的角,二面角的平面角,在直角三角形中算出他们的余弦值,利用向量法计算直线与直线所成的角为的余弦值,然后比较大小.【详解】令,由平面,且平面,又,,面三棱锥的每一个面都是直角三角形.与平面所成的角,二面角的平面角,由已知可得,,,又,则所以,又均为锐角,故选:A.4、B【解析】由方程可得抛物线的焦点和准线,进而由抛物线的定义可得,解之可得值【详解】解:由题意可得抛物线开口向右,焦点坐标,,准线方程,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即,解之可得.故选:B.5、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B6、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A7、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C8、D【解析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.9、D【解析】根据向量的线性运算公式化简可得结果.【详解】因为E,F分别是AB,AC的中点,所以,,所以,故选:D10、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.11、B【解析】根据正弦函数的性质判断命题为假命题,由判断命题为真命题,从而得出答案.【详解】因为的值域为,所以命题为假命题因为,所以命题为真命题则命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题故选:B12、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线平行的充要条件即可求出【详解】当时,显然两直线不平行,所以依题有,解得故答案为:14、【解析】求出函数的导数,再令,即可得出答案.【详解】解:由,得,所以.故答案为:.15、【解析】由题设条件可知,.当M在直线与椭圆交点上时,在第一象限交点时有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值.由此能够求出的最大值.【详解】解:A为椭圆右焦点,设左焦点为,则由椭圆定义,于是.当M不在直线与椭圆交点上时,M、F、B三点构成三角形,于是,而当M在直线与椭圆交点上时,在第一象限交点时,有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值为.故答案为:.【点睛】本题考查椭圆的基本性质,解题时要熟练掌握基本公式.16、【解析】设A,B分别为,由焦点在已知直线上求F坐标及抛物线方程,再根据题设三角形的面积关系可得,并设直线l为,联立抛物线应用韦达定理求参数m,即可知直线l的方程.【详解】设点A,B的坐标分别为,直线,令可得,故焦点F的坐标为,所以,由,,而△的面积是△面积的4倍,所以,即,设直线l为,联立方程,消去x后整理为,所以,代入,有,可得,则直线l的方程为故答案为:.【点睛】关键点点睛:根据抛物线焦点位置及其所在直线求抛物线方程,由面积关系得到交点纵坐标的数量关系,注意交点在x轴两侧,再设直线联立抛物线求参数即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)将,代入中化简即可得到答案;(2)利用,结合向量数量积运算律计算即可.【小问1详解】是PC的中点,,,,,结合,,,得.【小问2详解】∵底面ABCD是边长为1的菱形,且,侧棱,,,,,.,.由(1)知,,,即BM的长等于.18、(1);(2)①;②定点有两个,【解析】(1)由双曲线方程有、、,根据已知条件有,即可求离心率.(2)①由题设有,结合(1)求双曲线参数,写出双曲线方程即可;②由题设可设为,,,联立双曲线方程结合韦达定理求,,,,再由、的方程求,坐标,若在为直径的圆上点,由结合向量垂直的坐标表示列方程,进而求出定点坐标.【小问1详解】由题设,若,且,又△为等腰直角三角形,∴,即,则又,可得.【小问2详解】由题设,,由(1)有,则,即,①由上可知:双曲线方程为.②由①知:,且直线的斜率不为0,设为,,,联立直线与双曲线得:,∴,,则,∴,∴直线为;直线为;∴,,若在为直径的圆上点,∴,且,∴,令,则,∴,即,∴或,即过定点.【点睛】关键点点睛:第二问的②,设直线为,联立直线与双曲线,应用韦达定理求,,,,进而根据、的方程求,坐标,再由圆的性质及向量垂直的坐标表示求定点坐标.19、(1);(2)不能,理由见解析.【解析】(1)由题得每分钟上升的高度构成等比数列,再利用等比数列的通项求解;(2)求出即得解.【小问1详解】解:由题意,飞机模型每分钟上升的高度构成,公比的等比数列,则米.即飞机模型在第三分钟内上升的高度是米.【小问2详解】解:不能超过米.依题意可得,所以这个飞机模型上升的最大高度不能超过米.20、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为21、(1),(2)【解析】(1)直接解不等式即可,(2)由题意可得,从而可得解不等式组可求得答案【小问1详解】由,得,故由,得,故【小问2详解】依题意得:,∴解得∴m的取值范围为22、(1)证明见解析(2)【解析】(1)设直线方程,与抛物线方程联立,设,,结合,得到,结合根与系数的关系,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论