版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴市2026届高二上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.22.曲线在点处的切线方程为()A. B.C. D.3.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.34.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.5.已知,则()A. B.C. D.6.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.97.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.8.在等差数列中,,,则()A. B.C. D.9.已知角为第二象限角,,则的值为()A. B.C. D.10.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥011.的内角A,B,C的对边分别为a,b,c,若,则一定是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形12.抛物线的焦点坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足:,,则______14.在空间直角坐标系中,已知向量,则的值为__________.15.已知矩形的长为2,宽为1,以该矩形的边所在直线为轴旋转一周得到的几何体的表面积为___________.16.过抛物线的焦点作互相垂直的两条直线,分别交抛物线与A,C,B,D四点,则四边形ABCD面积的最小值为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围18.(12分)如图,在四棱锥中,底面为直角梯形,底面分别为的中点,(1)求证:平面平面;(2)求二面角的大小19.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.20.(12分)有时候一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同品牌的一些食品所含热量的百分比记为和一些美食家以百分制给出的对此种食品口味的评价分数记为:食品品牌12345678910所含热量的百分比25342019262019241914百分制口味评价分数88898078757165626052参考数据:,,,参考公式:,(1)已知这些品牌食品的所含热量的百分比与美食家以百分制给出的对此种食品口味的评价分数具有相关关系.试求出回归方程(最后结果精确到);(2)某人只能接受食品所含热量百分比为及以下的食品.现在他想从这些食品中随机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食品口味的评价分数为分以上的概率.21.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A2、A【解析】利用切点和斜率求得切线方程.【详解】由,有曲线在点处的切线方程为,整理为故选:A3、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D4、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.5、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.6、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B7、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.8、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.9、C【解析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【详解】∵,是第二象限角,∴,∴.故选:C.10、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.11、B【解析】利用余弦定理化角为边,从而可得出答案.【详解】解:因为,所以,则,所以,所以是等腰三角形.故选:B.12、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令n=n-1代回原式,相减可得,利用累乘法,即可得答案.【详解】因为,所以,两式相减可得,整理得,所以,整理得,又,解得.故答案为:14、【解析】由题知,进而根据向量数量积运算的坐标表示求解即可.【详解】解:因为向量,所以,所以故答案为:15、或##或【解析】分两种情况进行解答,①以边长为2的边为轴旋转,②以边长为1的边为轴旋转.进行解答即可【详解】解:①以边长为2的边为轴旋转,表面积两个底面积侧面积,即:,②以边长为1的边为轴旋转,表面积两个底面积侧面积,即:,故答案为:或16、512【解析】设出直线的方程与抛物线方程联立,结合抛物线的定义、一元二次方程根与系数的关系进行求解即可.【详解】抛物线焦点的坐标为,由题意可知:直线存在斜率且不为零,所以设直线的斜率为,所以直线的方程为,与抛物线的方程联立得:,设,所以,由抛物线的定义可知:,因为直线互相垂直,所以直线的斜率为,同理可得:,所以四边形ABCD面积为:,当且仅当时取等号,即当时取等号,故答案为:512三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案【详解】易知,得,则,而,又,得,,因此,椭圆C的标准方程为;当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;当两条直线斜率都存在且不为0时,由知,设、,直线MN的方程为,则直线PQ的方程为,将直线方程代入椭圆方程并整理得:,显然,,,,同理得,所以,,令,则,,设,,所以,,所以,,则综合可知,的取值范围是【点睛】本题主要考查待定系数法求椭圆方程及圆锥曲线求范围,属于难题.解决圆锥曲线中的范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.18、(1)证明见解析(2)【解析】(1)依题意可得平行四边形是矩形,即可得到,再由及面面垂直的性质定理得到平面,从而得到,即可得到平面,从而得证;(2)建立空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】证明:因为为的中点,,所以,又,所以四边形为平行四边形,因为,所以平行四边形是矩形,所以,因为,所以,又因为平面平面,平面平面面,所以平面,因为面,所以,又因为,平面,所以平面,因为平面,所以平面平面;【小问2详解】解:由(1)可得:两两垂直,如图,分别以所在的直线为轴建立空间直角坐标系,则则,设平面的一个法向量,由则,令,则,所以,设平面的一个法向量,所以,根据图像可知二面角为锐二面角,所以二面角的大小为;19、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.20、(1)(2)【解析】(1)首先求出、、,即可求出,从而求出回归直线方程;(2)由表可知某人只能接受的食品共有种,评价为分以上的有种可记为,,另外种记为,,,,用列举法列出所有的可能结果,再根据古典概型的概率公式计算可得;【小问1详解】解:设所求的回归方程为,由,,,,所求的回归方程为:.【小问2详解】解:由表可知某人只能接受的食品共有种,其中美食家以百分制给出的对此种食品口味的评价为分以上的有种可记为,,另外种记为,,,.任选两种分别为:,,,,,,,,,,,,,,,共15个基本事件.记“所选取的两种食品至少有一种是美食家以百分制给出的对此食品口味的评价分数为分以上”为事件,则事件包含,,,,,,,,共个基本事件,故事件发生的概率为.21、(1)证明见解析(2)【解析】(1)取的中点F,连接EF,,由四边形是平行四边形即可求解;(2)采用建系法,以为轴,为轴,垂直底面方向为轴,求出对应点坐标,结合二面角夹角余弦公式即可求解.【小问1详解】取的中点F,连接EF,,∵,∴,且,∴,∴四边形是平行四边形,∴,又平面,平面,∴平面;【小问2详解】取AC的中点O,以O为坐标原点,建立如图所示的空间直角坐标系,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025注册测绘师测绘项目管理真题及答案
- 2026年学校关工委工作总结
- 燃气阀门专业知识培训课件
- 保险合规培训课件开场白
- 煤采制培训课件
- 医疗器械注册申报法规要求及资料准备
- 环保执法培训
- 铁矿石加工项目实施方案
- 《FZT 13040-2016芳砜纶色织布》专题研究报告
- 《GAT 2000.252-2019公安信息代码 第252部分:图像文件格式代码》专题研究报告
- 通信设备用电安全培训课件
- 方太企业培训课件
- 水上平台施工安全培训课件
- 中秋福利采购项目方案投标文件(技术方案)
- 固态电池技术在新能源汽车领域的产业化挑战与对策研究
- 手术部(室)医院感染控制标准WST855-2025解读课件
- 二氧化硅气凝胶的制备技术
- 湖南省岳阳市平江县2024-2025学年高二上学期期末考试语文试题(解析版)
- 2024-2025学年湖北省武汉市江汉区七年级(下)期末数学试卷
- 常规体检指标讲解
- 新人教版高中数学必修第二册-第八章 立体几何初步 章末复习【课件】
评论
0/150
提交评论