版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市公务员考试数量关系专项练习题
第一部分单选题(150题)
1、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的
一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加
c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参
加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e
班人数最少,可知各班人数关系为:27>x>y>6o该班有56名学生,
56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇
数,排除B、Do代入A选项,当x=7时,y=8,则x<Y,不符合题意,
排除。故选C。
2、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3X2+1,22=7X3+1,155=22X7+1,即所填数字为
22X155+l=3411o故选D。
3、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要
和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。
已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得
分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队
打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4
个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若
最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,
不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两
场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5
分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获
胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1
分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积
分为1分。故选A。
4、2,6,18,54,•)
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:该数列是以3为公比的等比数列,故空缺项为:54X3=162。故
选Bo
5、2,3,10,15,26,35,()
A、40
B、45
C、50
I)、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平
方+1,35=6平方T,问号=7平方+1,问号二50。故选C。
6、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1
等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。
7、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多
少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把
大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2
与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆
分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使
加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不
如将它换成2个3。因为2X2X2=8,而3X3=9。故拆分出的自然数中,
至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,
其乘积最大,最大值为243X2=486。故选B。
8、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多
少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个
平方数为偶数的是100,需要再过(100-64)+2=18年。故选B。
11、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比为6的等比数列。故选A。
12、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一
个应为18,原数列下一项为18+72=90。故选C。
13、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的
一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加
c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参
加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e
班人数最少,可知各班人数关系为:27>x>y>6o该班有56名学生,
56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇
数,排除B、I)。代入A选项,当x=7时,k8,则x〈Y,不符合题意,
排除。故选C。
14、2,4,12,32,88,()
A、140
B、180
C、220
D、240
【答案】:答案:D
解析:12=2X(2+4),32=2X(4+12),88=2X(32+12),第三项
=2X(第一项+第二项),即所填数字为2X(88+32)=240。故选D。
15、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张
书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生
产9张书桌或15把埼子,现在书桌和椅子要配套生产(每套一张书桌
一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可
知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安
排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7
天可生产桌子12X7=84(张),丙7天可生产椅子15X7=105(把)。
设乙生产书桌x天,则生产椅子(7—x)天,当生产的书桌数与椅子数
相同时,获得套数最多,可列方程84+9x=105+12X(7-x),解得x
=5,则乙可生产书桌9义5=45(张)。故7天内这三位师傅最多可以生
产桌椅84+45=129(套)。故选B。
16、9,20,42,86,(),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9X2+2,42=20X2+2,86=42X2+2,第一项义2+2=
第二项,即所填数字为86X2+2=174。故选B。
17、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8X2-6=10;10X2-6=14;14X2-10=18;18X2-10=26o故选C。
18、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;
()=14;21+14=35。故选B。
19、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212o后一项-前一项二212,即所填数字
为536+212=738o故选B。
20、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2+1=2,6+2=3,30+6=5,2104-30=7,相邻两项后一项
除以前一项的商构成连续的质数列,即所填数字为210X11=2310。故
选Bo
21、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
I)、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,
接下来是8.分母是6、10、14、18,接下来是22。故选A。
22、有一架天平,只有5克和30克的碳码各一个。现在要用这架天平
把300克味精平均分成3份,那么至少需要称多少次?()
A、3次
B、4次
C、5次
D、6次
【答案】:答案:A
解析:第1次,用30克和5克祛码称出35克味精;第2次,再35克
味精作为碳码,和30克碳码一起称出65克味精,此时已称出100克
味精;第3次,用100克味精作为磋码称出100克味精,还剩100克。
把300克味精平均分为3份。故“至少”需要3次。故选A。
23、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门
口,请问第58面旗是什么颜色?()
A、黄
B、红
C、绿
D、紫
【答案】:答案:A
解析:根据“按照红、黄、绿、紫”可知,四个颜色为一个周期,则
58+4=14...2,故第58面旗是14个周期后的第二面,即为黄色。故
选Ao
24、130,68,30,(),2
A、11
B、12
C、10
I)、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。
25、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内
做和均为100o故选A。
26、有一1500米的环形跑道,甲,乙二人同时同地出发,若同方句跑,
50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙
的速度为()o
A、330米/分钟
B、360米/分钟
C、375米/分钟
D、390米/分钟
【答案】:答案:B
解析:同向追及50分钟后甲比乙多跑一圈得:(V甲一V乙)X50=
1500;由反向跑2分钟后相遇有:(V甲+V乙)X2=1500,解得V乙
=360(米/分钟)。故选B。
27、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,
53-2=125-2=123。故选A。
28、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,
为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选
Do
29、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:I)
解析:二级等差。(即作差2次后,所得相同)。故选I)。
30、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都
要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。
已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得
分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队
打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4
个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若
最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,
不符合题意,故乙队得7分,即2胜1平。由条件⑶知,丁队恰有两
场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5
分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获
胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1
分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积
分为1分。故选A。
31、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数
项,每项等于首项%12,公差为-2的平方加1;偶数项,每项等于首项
为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。
32、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,
8等差,所以后项为4/10=2/5。故选C。
33、130,68,30,•),2
A、11
B、12
C、10
I)、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。
34、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只
好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一
倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度%2,步行速度为1,设步行时间为t分钟,由题意
可知,50X2=2(50+10-t)+lt,得t=20,即步行了20分钟。故选A。
35、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收
取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按
8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月
用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低分水。
先将两个月4元/吨的额度用完,花费4X5X2=40(元);再将6元/吨
的额度用完,花费6X5X2=60(元)。由两个月共交水费108元可知,
还剩108—40—60=8(元),可购买1吨单价为8元/吨的水。该户居民
这两个月用水总量最多为5X2+5X2+1=21(吨)。故选B。
36、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还
原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯
净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。
()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净
水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为
10+10+20=40(千克),最终溶质为10+20义30%=16(千克)。则最终果汁
浓度=16+40X100%=40%。故选A。
37、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米
价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每
公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的
数量不能超过()o
A、800吨
B、1080吨
C、1360吨
D、1640吨
【答案】:答案:D
解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低
下降为每公斤L86元,即下降了2.68-L86元.82(元降因为每投放
100吨,价格下降0.05元,所以投放玉米的数量不能超过
p
0.824-0.05X100=1640(t)o故选D。
38、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,
至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少
为多少?()
A、35%
B、50%
C、55%
D、60%
【答案】:答案:B
解析:设订阅时报的住户为x,至少订阅一种报纸的人数为4096+x—
15%o由至少75%的住户至少订阅两种报纸中的一种得,40%+x—
15%^75%,解得x25(»。故选B。
39、三个学校的志愿队分别去敬老院照顾老人,A学校志愿队每隔7天
去一次,B学校志愿队每隔9天去一次,C学校志愿队每隔14天去一
次,三个队伍周三第一次同时去敬老院,问下次同时去敬老院是周
几?()
A、周三
B、周四
C、周五
D、周六
【答案】:答案:B
解析:根据每隔7天去一次,可知A每8天去一次敬老院,同理,B、
C每10天、15天去一次敬老院。下次同时去敬老院应该为120(8、10、
15的最小公倍数)天后。每周7天,120+7=17…1,故三人下次同时去
敬老院应该是周三后推一天,即周四。故选B。
40、4,5,9,18,34,()
A、59
B、37
C、46
D、48
【答案】:答案:A
解析:该数列的后项减去前项得到一个平方数列,故空缺处应为34+25
=59。故选A。
41、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,
去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游
客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,
有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。
那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+
32+27-y-2X8=50-l,解得y=29。故选A。
42、0,4,18,(),100
A、48
B、58
C、50
D、38
【答案】:答案:A
解析:思路一:0、4、18、48、100=>作差二>4、14、30、52=>作差
二>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-
42=48;53-52=100。思路三:0X1=0;1X4=4;2X9=18;3X16=48;
4X25=100。思路四:1X0=0;2X2=4;3X6=18;4X12=48;
5X20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思
路五:0=12X0;4=22X1;18=32X2;()=X2XY;100=52X4所以
()42X3。
43、133/256,125/64,117/16,()
A、109/4
B、103/2
C、109/6
D、115/8
【答案】:答案:A
解析:分子133、125、117、(109)是公差为-8的等差数列,分母256、
64、16、(4)是公比为1/4的等比数列。故选A。
44、11,34,75,(),235
A、138
B、139
C、140
D、14
【答案】:答案:C
解析:思路一:11=23+3;34=33+7;75=43+11;140=53+15;
235=63+19其中2,3,4,5,6等差;3,7,11,15,19等差。思路
二:二级等差。故选C。
45、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二级等差。(即作差2次后,所得相同)。故选D。
46、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要
1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,
老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,
球会重新回到小华手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2
号、……、29号。公华以顺时针方向开始传球。①经过16秒,顺时针
传到16号;②转向:经过15秒(31—16=15),逆时针传到1号;③
转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19
秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到
小华手上。故选A。
47、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲
晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,
则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,
丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30
分钟的路程,乙需要2小时才能追上,则30x=(y—x)X2X60,化简
得x:y=4:5。又因乙行驶20分钟的路程,丙需要5小时才能追上,
则20y=(z—y)X5X60,化简得y:z=15:16。所以三辆汽车的速度
x:y:z=12:15:16c赋值甲、乙、丙的速度分别为12、15、16,甲
出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已
经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程
12X50=(16-12)Xt,解得t=150。故选B。
48、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%
的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从
这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后
两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435X20%=87份没有写手机号;且手机号
码后两位可能出现的情况一共10X10=100种,因此要保证一定能找到
两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。
故选C。
49、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量
正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢
产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为
多少万吨?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假设总产量龙,则型钢类产量为,钢板类产量为,钢管类为,
钢丝的产量为,贝•],解得万吨,则总产量万吨。故正确答案为D。
50、3,-6,12,-24,()
A、42
B、44
C、46
I)、48
【答案】:答案:I)
解析:公比为-2的等比数列。故选D。
51、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236
米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7
秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)X7,所以v=35,那么275+2000=35t,t=65,
选Ao
52、某农户在鱼塘里放养了一批桂花鱼苗。过了一段时间,为了得知
鱼苗存活数量,他先从鱼塘中捕出200条鱼,做上标记之后,再放回
鱼塘,过几天后,再从鱼塘捕出500条鱼,其中有标记的鱼苗有25条。
假设存活的鱼苗在这几天没有死,则这个鱼塘里存活鱼苗的数量最有
可能是()条。
A、1600
B、2500
C、3400
D、4000
【答案】:答案:D
解析:由的25/200=500/x,解得x=4000。故选D。
53、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)X(7+7)=42,(7-3)X(6+4)=40,(8-2)X(3+2)=(30)。故
选Ao
54、-2,1,31,70,112,()
A、154
B、155
C、256
D、280
【答案】:答案:B
解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,
是公比为1/3的等比数列,即所填数字为(3+3)+42+112=155。故
选Bo
55、8,16,22,24,()
A、18
B、22
C、26
D、28
【答案】:答案:A
解析:8X2-0=16,16X2-10=22,22X2—20=24,前一项X2一
修正项=后一项。即所填数字为24X2—30=18。故选A。
56、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分
别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发
地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地
之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少
个小时?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根据“分别同时从A.B两地出发“、“两车第二次相遇“,可
知考查的是两端出发的多次相遇问题,公式为(vl+v2)t=(2n-l)S。代
入数据得(60+40)8(2X2-1)X480,解得314.4,由“各自花费一小
时卸货“,故经过了14.4+1=15.4小时。故选C。
57、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:84-2+4=8,4+2+8=10,
84-2+10=14,即第一项・2+第二项二第三项,因此未知项为
10+2+14=19。故选C。
58、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的
盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分
混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。
则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)X0.5%=0.2克,即从B中取出的10克
中含盐0.2克,则B的浓度为0.2+10=2%,进而求出B中含盐量为
(20+10)X2%=0.6克,即从A中取出的10克中含盐0.6克,可得A
的浓度为0.6+10=6%,进一步得出A中含盐量为(10+10)X6%=1.2
克,故开始倒入A中的盐水浓度为1.2+10=12%。故选A。
59、2012年3月份的最后一天是星期六,贝J2013年3月份的最后一天
是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:从2012年3月31号到2013年3月31号,一共是365天,
365・7二52周…1天,所以星期六加一天即为星期天。故选A。
60、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)X4=24,(24-8)X4=64,(64-
24)X4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,
128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选
Ao
61、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、
中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中
型车的数量比是5:6,中型车与小型车的数量比是4:11,小型车的
通行费总数比大型车的多270元,这天的收费总额是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10:12:33。以10辆大型车、12
辆中型车、33辆小型车为一组。每组小型车收费比大型车多33X10-
10X30=30元。实际多270元,说明共通过了270・30=9组。每组收费
10X30+12X15+33X10=810元,收费总额为9X810=7290元。故选B。
62、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原数列各项可作如下拆分:[5[9],[11117],[2325],
[47133],[95141]o其中前半部分数字作差后构成等比数列,后半部
分作差后构成等差数列。因此未知项为4733。故选B。
63、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的
盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分
混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。
则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)X0.5%=0.2克,即从B中取出的10克
中含盐0.2克,则B的浓度为0.2+10=2%,进而求出B中含盐量为
(20+10)X2%=0.6克,即从A中取出的10克中含盐0.6克,可得A
的浓度为0.64-10=6%,进一步得出A中含盐量为(10+10)X6%=1.2
克,故开始倒入A中的盐水浓度为1.2+10=12%。故选A。
64、-24,3,30,219,()
A、289
B、346
C、628
I)、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为
93+3=732o故选D。
65、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8X2-6=10;10X2-6=14;14X2-10=18;18X2-10=26o故选C。
66、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2X7,294=14X21,为两项相加、相乘交替
得到后一项,即所填数字为21+294=315。故选D。
67、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0X0+l=l,IX1+2=3,3X3+1=10,10X10+2=102。思
路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加
的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,
0,奇数项都能被3整除,偶数项除3余1。故选B。
68、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要
1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,
老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,
球会重新回到小华手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2
号、……、29号。公华以顺时针方向开始传球。①经过16秒,顺时针
传到16号;②转向:经过15秒(31—16=15),逆时针传到1号;③
转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19
秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到
小华手上。故选A。
69、一个四边形广场,它的四边长分别是60米、72米、96米、84米,
现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至
少要种多少棵树?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为
四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数
最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度+间
距=(60+72+84+96)+12=26(棵)。故选C。
70、从A地到B地方上坡路。自行车选手从A地出发按A-B-A-B的路
线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程
平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀
速骑行,问他上坡的速度是下坡速度的()o
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比
是4:5,故两次行程所用时间之比Tl:T2=5:4O设一个下坡的时间是1,
一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程
经历了2个上坡和1个下坡,则Tl=2n+1;B-A-B-A的过程经历了2个
下坡和1个上坡,则T2=2+n,而Tl:T2=5:4=(2n+1):(2+n),解得
n=2o故选Ao
71、一项考试共有35道试题,答对一题得2分,答错一题扣1分,不
答则不得分。一名考生一共得了47分,那么,他最多答对()题。
A、26
B、27
C、29
I)、30
【答案】:答案:B
解析:设答对了x道,答错y道,则可知2x—y=47,存在没答题目的
情况,因此x+yW35。题干问最多答对题数,则从最大的开始代入。D
选项,x=30,代入2x—y=47,解得y=13,此时x+y超过35,不符;
C项x=29,y=ll,此时x+y超过35,不符;B项x=27,y=7,剩
余1道没答,符合题意。故选B。
72、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故选C。
73、80X35X15的值是()o
A、42000
B、36000
C、33000
D、48000
【答案】:答案:A
解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45
和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来
进行处理。原式二80X9X5X5X3=80X25X27=2000X27=54000。本题
运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所
整除,观察选项。故选A。
74、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3X3+1,31=10X3+1,94=31X3+1,每一项等于前一
项乘以3加上1,即所填数字为94X3+1=283。故选D。
75、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得
较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个
钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会
指在相同的分钟位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古
董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已
知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多
走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,
即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重
合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟
的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时
三个分针处于同一个位置。故正确答案为D,
76、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-
226=9,238-235=3,是公比为的等比数列,即所填数字为238-
3=226+9=235o故选D。
77、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,
接下来是8.分母是6、10、14、18,接下来是22。故选A。
78、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余
几?()
A、1
B、2
C、3
D、4
【答案】:答案:I)
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。
故3a-b=18-9=9,9除以5余4。故选D。
79、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2+1=2,6+2=3,30+6=5,2104-30=7,相邻两项后一项
除以前一项的商构成连续的质数列,即所填数字为210X11=2310。故
选Bo
80,-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、
-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,
所求项为:-9义5=-45。故选D。
81、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收
取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按
8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月
用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低,'介水。
先将两个月4元/吨的额度用完,花费4X5X2=40(元);再将6元/吨
的额度用完,花费6X5X2=60(元)。由两个月共交水费108元可知,
还剩108—40—60=8(元),可购买1吨单价为8元/吨的水。该户居民
这两个月用水总量最多为5X2+5X2+1=21(吨)。故选B。
82、78,9,64,17,32,19,()
A、18
B、20
C、22
D、26
【答案】:答案:A
解析:两两相加二〉87、73、81、49、51、37=>每项除以3,则余数为
二>0、1、0、1、0、lo故选A。
83、1/5,1/3,3/7,1/2,()
A、5/9
B、1/6
C、6
D、3/5
【答案】:答案:A
解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数
列。故选A。
84、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:该数列为和数列,即前三项之和为第四项。故空缺处应为
6+11+19=36。故选B。
85、2,2,3,4,9,32,()
A、129
B、215
C、257
D、283
【答案】:答案:D
解析:2X2—1=3,3X2—2=4,4X3-3=9,9X4-4=32,第n+2
项=第n项X第(n+1)项一n(n=l,2,•••),即所填数字为32X9-5
=283。故选D。
86、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,
去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游
客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,
有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。
那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+
32+27-y—2X8=50-1,解得y=29。故选A。
87、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗
牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗
是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多
少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味
的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),
(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。
因此取出的另一颗糠也是牛奶味的概率为1/5。故选C。
88、20/9,4/3,7/9,4/9,1/4,()
A、3/7
B、5/12
C、5/36
D、7/36
【答案】:答案:C
解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,
16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,
28,16,9,5三级等差。故选C。
89、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,
为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。
故选B。
90、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3X3+1,31=10X3+1,94=31X3+1,每一项等于前一
项乘以3加上1,即所填数字为94X3+1=283。故选D。
91、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部
门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,
则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被
10整除,排除B、Co将A项代入题目,可得部门数为(192+8)+10=
20(个),则原来平均发给每部门(192—⑵+20=9(筐),水果筐数为
整数解,符合题意。故选A。
92、1,11,21,31,()
A、39
B、49
C、41
D、51
【答案】:答案:C
解析:题中数列为公差为10的等差数列,故():31+10:41。故选C。
93、A地到B地的道路是下坡路。小周早上6:00从A地出发匀速骑车
前往B地,7:00时到达两地正中间的C地。到达B地后,小周立即匀
速骑车返回,在10:00时又途经C地。此后小周的速度在此前速度的
基础上增加1米/秒。最后在11:30回到A地。问A、B两地间的距
离在以下哪个范围内?
A.40〜50公里
B.大于50公里
C.小于30公里
D.30〜40公里
【答案】:答案:A
解析:设小周下坡速度为,上坡速度为。根据条件分析可列下表:在
上坡阶段B->C=C-*A,可得,解得=3m/s,根据lm/s=3600m/h,因此。
故正确答案为Ao
94、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56—25=—3X[25—(—2)],25—(—2)=—3X(—2—7),
—2—7=—3X(7-4),第(N—1)项一第N项=-3[第N项一第(N+1)
项](N22),即所填数字为4—=5。故选D。
95、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10X1-1=9;9X2-1=17;17X3-1=50;50X4-l=199o故选C。
96、1,2,4,3,5,6,9,18,()
A、14
B、24
C、27
D、36
【答案】:答案:A
解析:位于奇数项的1、4、5、9构成和数列,位于偶数项的2、3、6、
18构成积数列,即所填的奇数项应为5+9=14。故选A。
97、0,3,18,33,68,95,()
A、145
B、148
C、150
D、153
【答案】:答案:C
解析:原数列写为0二0义1,3=1X3,18=2X9,33=3X11,68=4X17,
95=5X19,其中1,3,9,11,17,19构成的数列奇数项是等差数列,
偶数项也是等差数列。故空缺处数字为6X25=150。故选C。
98、T,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、
-1、1、3,新数列%公差是2的等差数列,则新数列的下一项应为5,
所求项为:-9X5=45。故选D。
99、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10
万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,
扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000
元而成本不变,问该店在租下店面后第几个月内收回投资?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由题意可得租下店面前3个月成本为1X3+10=13(万元),租下
店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、
公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。
由3+3・2+3・4+3・6=13.2>13,即第7个月收回投资。故选A。
100、5,7,9,(),15,19
A、11
B、12
C、13
D、14
【答案】:答案:C
解析:5=2+3,7=2+5,9=2+7,15=2+13,19=2+17,每一项
是一个连续质数数列与2的和,即所填数字为11+2=13。故选C。
101、4,12,8,10,()
A、6
B、8
C、9
])、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1
等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9<>故选C。
102、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为
36/()=l/4o故选C。
103、甲、乙、丙三名质检员对一批依次编号为1~100的电脑进行质量
检测,每个人均从随机序号开始,按顺序往后检测,如检测到编号为
100的电脑,则该质检员的检测
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粉末冶金成型工操作管理水平考核试卷含答案
- 矿压观测工班组建设知识考核试卷含答案
- 高压试验工安全专项水平考核试卷含答案
- 医药商品购销员安全强化考核试卷含答案
- 2025年有机废水沼气系统项目发展计划
- 2025年引导信标机合作协议书
- 2026年1月24日河北省直机关选调面试真题及答案解析(上午卷)
- 狙击枪介绍课件
- 环境局业务培训课件模板
- 燃气安全隐患排查报告燃气安全隐患排查整治工作总结
- 中远海运集团笔试题目2026
- 2026年中国热带农业科学院橡胶研究所高层次人才引进备考题库含答案详解
- 妆造店化妆品管理制度规范
- 2025-2026学年四年级英语上册期末试题卷(含听力音频)
- 浙江省2026年1月普通高等学校招生全国统一考试英语试题(含答案含听力原文含音频)
- 2026届川庆钻探工程限公司高校毕业生春季招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 基本农田保护施工方案
- 销售心理学全集(2022年-2023年)
- 变态反应课件
- 电力拖动控制线路与技能训练-教案
- 50年同学聚会邀请函(十二篇)
评论
0/150
提交评论