版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省连云港市高三数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.2.设等差数列的前项和为,若,则()A.10 B.9 C.8 D.73.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.4.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.5.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A. B. C. D.6.的展开式中的一次项系数为()A. B. C. D.7.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.8.已知变量,满足不等式组,则的最小值为()A. B. C. D.9.已知随机变量服从正态分布,且,则()A. B. C. D.10.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.11.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.1112.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,角A,B,C的对边分别为a,b,c,且,则________.14.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.15.已知,满足约束条件,则的最大值为________.16.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.18.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.19.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.20.(12分)设复数满足(为虚数单位),则的模为______.21.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,22.(10分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.2、B【解析】
根据题意,解得,,得到答案.【详解】,解得,,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.3、B【解析】
根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.4、D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.5、C【解析】
由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.【详解】解:初始值,,程序运行过程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循环,输出的值为其中①②①—②得.故选:.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.6、B【解析】
根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.【详解】由题意展开式中的一次项系数为.故选:B.【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.7、B【解析】
根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.8、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.9、C【解析】
根据在关于对称的区间上概率相等的性质求解.【详解】,,,.故选:C.【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.10、A【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.11、A【解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.12、B【解析】
根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.14、【解析】
由题意可在定义域上有四个不同的解等价于关于原点对称的函数与函数的图象有两个交点,运用参变分离和构造函数,进而借助导数分析单调性与极值,画出函数图象,即可得到所求范围.【详解】已知定义在上的函数若在定义域上有四个不同的解等价于关于原点对称的函数与函数f(x)=lnx-x(x>0)的图象有两个交点,联立可得有两个解,即可设,则,进而且不恒为零,可得在单调递增.由可得时,单调递减;时,单调递增,即在处取得极小值且为作出的图象,可得时,有两个解.故答案为:【点睛】本题考查利用利用导数解决方程的根的问题,还考查了等价转化思想与函数对称性的应用,属于难题.15、【解析】
根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为.故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.16、【解析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;所以所求的概率是.考点:古典概型概率三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】
(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.18、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】
(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.19、(Ⅰ);(Ⅱ)证明见解析【解析】
(Ⅰ)求导得到,,解得答案.(Ⅱ),故,在上单调递减,在上单调递增,,设,证明函数单调递减,故,得到证明.【详解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,,故恒成立,故单调递减.,故当时,.【点睛】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.20、1【解析】
整理已知利用复数的除法运算方式计算,再由求模公式得答案.【详解】因为,即所以的模为1故答案为:1【点睛】本题考查复数的除法运算与求模,属于基础题.21、(1)选取更合适;(2);(3)时,煤气用量最小.【解析】
(1)根据散点图的特点,可得更适合;(2)先建立关于的回归方程,再得出关于的回归方程;(3)写出函数关系,利用基本不等式得出最小值及其成立的条件.【详解】(1)选取更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型;(2)由公式可得:,,所以所求回归直线方程为:;(3)根据题意,设,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轴承装配工安全知识竞赛能力考核试卷含答案
- 飞机外勤弹射救生工岗前健康知识考核试卷含答案
- 井下特种装备操作工成果转化模拟考核试卷含答案
- 2025年记忆绵家居制品合作协议书
- 学生综合实践活动请假条
- 2025年变频器柜体系统合作协议书
- 2025年节能、高效干燥设备项目合作计划书
- 中国古购物中心行业市场前景预测及投资价值评估分析报告
- 信息和信息技术
- 人力资源部工作总结和计划
- 门窗维修协议合同范本
- 子宫肌瘤课件超声
- 2025年异丙醇行业当前发展现状及增长策略研究报告
- 出租车顶灯设备管理办法
- DB11∕T 637-2024 房屋结构综合安全性鉴定标准
- 2025年新疆中考数学真题试卷及答案
- 2025届新疆乌鲁木齐市高三下学期三模英语试题(解析版)
- DB3210T1036-2019 补充耕地快速培肥技术规程
- 统编版语文三年级下册整本书阅读《中国古代寓言》推进课公开课一等奖创新教学设计
- 《顾客感知价值对绿色酒店消费意愿的影响实证研究-以三亚S酒店为例(附问卷)15000字(论文)》
- 劳动仲裁申请书电子版模板
评论
0/150
提交评论