宁夏石嘴山三中2026届高二数学第一学期期末检测模拟试题含解析_第1页
宁夏石嘴山三中2026届高二数学第一学期期末检测模拟试题含解析_第2页
宁夏石嘴山三中2026届高二数学第一学期期末检测模拟试题含解析_第3页
宁夏石嘴山三中2026届高二数学第一学期期末检测模拟试题含解析_第4页
宁夏石嘴山三中2026届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏石嘴山三中2026届高二数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m2.在中,已知角A,B,C所对的边为a,b,c,,,,则()A. B.C. D.13.不等式的一个必要不充分条件是()A. B.C. D.4.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆5.某双曲线的一条渐近方程为,且焦点为,则该双曲线的方程是()A. B.C. D.6.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A. B.C. D.7.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.48.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为()A. B.C.4 D.9.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg10.点,是椭圆的左焦点,是椭圆上任意一点,则的取值范围是()A. B.C. D.11.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.1312.直线的倾斜角为()A.150° B.120°C.60° D.30°二、填空题:本题共4小题,每小题5分,共20分。13.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______14.已知抛物线的焦点为F,过F的直线l交抛物线C于AB两点,且,则p的值为______15.已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.16.过抛物线的焦点且斜率为的直线交抛物线于A,两点,,则的值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从①,②,③,这三个条件中任选一个,补充在下面问题中并作答:已知等差数列公差大于零,且前n项和为,,______,,求数列的前n项和.(注:如果选择多个条件分别解答,那么按照第一个解答计分)18.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率19.(12分)如图,在四棱锥中,底面ABCD是边长为2的正方形,为正三角形,且侧面底面ABCD,(1)求证:平面ACM;(2)求平面MBC与平面DBC的夹角的大小20.(12分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由21.(12分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和22.(10分)已知定义域为的函数是奇函数,其中为指数函数且的图象过点(1)求的表达式;(2)若对任意的.不等式恒成立,求实数的取值范围;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.2、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.3、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B4、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A5、D【解析】设双曲线的方程为,利用焦点为求出的值即可.【详解】因为双曲线的一条渐近方程为,且焦点为,所以可设双曲线的方程为,则,,所以该双曲线方程为.故选:D.6、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A7、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.8、A【解析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C作CD⊥x轴于点D,则,所以直观图是底为2、高为的平行四边形,所以面积为.故选:A.9、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D10、A【解析】由,当三点共线时,取得最值【详解】设是椭圆的右焦点,则又因为,,所以,则故选:A11、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B12、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题14、3【解析】根据抛物线焦点弦性质求解,或联立l与抛物线方程,表示出,求其最值即可.【详解】已知,设,,,则,∵,所以,,∴,当且仅当m=0时,取..故答案为:3.15、【解析】设点关于原点的对称点为点,连接,分析可知四边形为平行四边形,可得出,设,可得出直线的方程为,设点、,将直线的方程与双曲线的方程联立,列出韦达定理,求出的取值范围,利用三角形的面积公式可求得的值,即可求得的值.【详解】解:设点关于原点的对称点为点,连接,如下图所示:在双曲线中,,,则,即点、,因为原点为、的中点,则四边形为平行四边形,所以,且,因为,故、、三点共线,所以,,故,由题意可知,,设,则直线的方程为,设点、,联立,可得,所以,,可得,由韦达定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案为:.16、2【解析】求出直线的方程,与抛物线的方程联立,利用根与系数的关系可,,由抛物线的定义可知,,,即可得到【详解】解:抛物线的焦点,,准线方程为,设,,,,则直线的方程为,代入可得,,,由抛物线的定义可知,,,,解得故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;【解析】将条件①②③转化为的形式,列方程组,并求解,写出的通项公式,从而表示出,利用裂项相消法求和.【详解】选①:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选②:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选③:设等差数列首项为,公差为,因为,,所以,所以,所以,所以【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列的和或差数列的求和18、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,设圆心,由可得,解得,则圆心,所以,圆的半径为,因此,圆的标准方程为.【小问2详解】解:由题意可知,直线截圆所得的弦在圆上对应的圆心角为,则圆心到直线的距离为,由点到直线的距离公式可得,解得.19、(1)证明见解析(2)30°【解析】(1)连接BD,借助三角形中位线可证;(2)建立空间直角坐标系,利用向量法直接可求.【小问1详解】连接BD,与AC交于点O,在中,因为O,M分别为BD,PD的中点,则,又平面ACM,平面ACM,所以平面ACM.【小问2详解】设E是AB的中点,连接PE,因为为正三角形,则,又因为平面底面ABCD,平面平面,则平面ABCD,过点E作EF平行于CB,与CD交于点F,以E为坐标原点,建立空间直角坐标系如图所示,则,,,,,,所以,,设平面CBM的法向量为,则,令,则,因为平面ABCD,则平面ABCD的一个法向量为,所以,所以平面MBC与平面DBC所成角大小为30°20、(1);(2)存在,最大距离为.,理由见解析【解析】(1)根据离心率及短轴长求椭圆参数,即可得椭圆方程.(2)根据直线与椭圆的位置关系,将问题转为平行于直线且与椭圆相切的切线与直线最大距离,设直线方程联立椭圆方程根据求参数,进而判断点T的存在性,即可求最大距离.【小问1详解】由题设知:且,又,∴,故椭圆C的方程为.小问2详解】联立直线与椭圆,可得:,∴,即直线与椭圆相离,∴只需求平行于直线且与椭圆相切的切线与直线最大距离即为所求,令平行于直线且与椭圆相切的直线为,联立椭圆,整理可得:,∴,可得,当,切线为,其与直线距离为;当,切线为,其与直线距离为;综上,时,与椭圆切点与直线距离最大为.21、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.22、(1);(2).【解析】(1)设(且),因为的图象过点,求得a的值,再根据函数f(x)是奇函数,利用f(0)=0即可求得n的值,得到f(x)的解析式,检验是奇函数即可;(2)将分式分离常数后,利用指数函数的性质可以判定f(x)在R上单调递减,进而结合奇函数的性质将不等式转化为二次不等式,根据二次函数的图象和性质,求得对于对任意的恒成立时a的取值范围即可.【详解】解:(1)由题意,设(且),因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论