版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省肥东圣泉中学2026届数学高一上期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.2.若实数满足,则的最小值为()A.1 B.C.2 D.43.在中,,,若点满足,则()A. B.C. D.4.已知命题p:“”,则为()A. B.C. D.5.下列函数中在定义域上为减函数的是()A. B.C. D.6.若幂函数的图象经过点,则=A. B.C.3 D.97.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.48.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致9.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为10.将函数图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间为______.12.函数的最大值是__________13.已知向量,写出一个与共线的非零向量的坐标__________.14.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.15.已知,,则的值为___________.16.使三角式成立的的取值范围为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2020年12月26日,我国首座跨海公铁两用桥、世界最长跨海峡公铁两用大桥——平潭海峡公铁两用大桥全面通车.这是中国第一座真正意义上的公铁两用跨海大桥,是连接福州城区和平潭综合实验区的快速通道,远期规划可延长到,对促进两岸经贸合作和文化交流等具有重要意义.在一般情况下,大桥上的车流速度(单位:千米/时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,将造成堵塞,此时车流速度为;当车流密度不超过辆/千米时,车流速度为千米/时,研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.18.已知函数,(1)求函数的最小正周期;(2)用“五点法”做出在区间的简图19.已知不等式的解集为(1)求的值;(2)求的值20.已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值21.在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B,记AB的中点为E(Ⅰ)若AB的长等于,求直线l的方程;(Ⅱ)是否存在常数k,使得OE∥PQ?如果存在,求k值;如果不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形2、C【解析】先根据对数的运算得到,再用基本不等式求解即可.【详解】由对数式有意义可得,由对数的运算法则得,所以,结合,可得,所以,当且仅当时取等号,所以.故选:.3、C【解析】由题可得,进一步化简可得.【详解】,,.故选:C.4、C【解析】根据命题的否定的定义判断【详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C5、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C6、B【解析】利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值【详解】设幂函数y=f(x)=xα,其图象经过点,∴2α,解得α,∴f(x),∴f(3)故选B【点睛】本题考查了幂函数的定义与应用问题,是基础题7、D【解析】令则即当时,当时,则令,,由图得共有个点故选8、C【解析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C9、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.10、C【解析】,所以,所以,所以是一条对称轴故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先将函数拆分成内外层函数,根据复合函数单调性的判断方法求解.【详解】函数分成内外层函数,是减函数,根据“同增异减”的判断方法可知求函数的单调递增区间,需求内层函数的减区间,函数的对称轴是,的减区间是,所以函数的单调递增区间为.故答案为:【点睛】本题考查复合函数的单调性,意在考查基本的判断方法,属于基础题型,判断复合函数的单调性根据“同增异减”的方法判断,当内外层单调性一致时为增函数,当内外层函数单调性不一致时为减函数,有时还需注意定义域.12、【解析】由题意得,令,则,且故,,所以当时,函数取得最大值,且,即函数的最大值为答案:点睛:(1)对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,当其中一个式子的值知道时,其余二式的值可求,转化的公式为(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函数的最值(或值域)时,可先设t=sinx±cosx,转化为关于t的二次函数求最值(或值域)13、(纵坐标为横坐标2倍即可,答案不唯一)【解析】向量与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4)故答案为14、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题15、【解析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值.【详解】.故答案为:.16、【解析】根据同角三角函数间的基本关系,化为正余弦函数,即可求出.【详解】因为,,所以,所以,所以终边在第三象限,.【点睛】本题主要考查了同角三角函数间的基本关系,三角函数在各象限的符号,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)车流密度为110辆/千米时,车流量最大,最大值为6050辆/时【解析】(1)根据题意,当时,设,进而待定系数得,故;(2)结合(1)得,再根据二次函数模型求最值即可.【小问1详解】解:当时,设则,解得:所以【小问2详解】解:由(1)得,当时,当时,,∴当时,的最大值为∴车流密度为110辆/千米时,车流量最大,最大值为6050辆/时18、(1);(2)答案见解析【解析】(1)利用两角和的正弦公式及二倍角公式化简即可得解;(2)列表,描点,即可作出图像.【详解】(1)由题意所以函数的最小正周期;(2)列表00作图如下:19、(1)(2)【解析】(1)根据根与系数的关系以及化弦为切求解即可;(2)由商数关系化弦为切求解即可.【小问1详解】依题意可知,是方程的两个实数根,所以故【小问2详解】20、(1)(2)【解析】(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值试题解析:(1)即(2)由,,,,,此时,考点:1.向量的数量积运算;2.三角函数化简及三角函数性质21、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在实数满足题意【解析】(Ⅰ)待定系数法,设出直线,再根据已知条件列式,解出即可;(Ⅱ)假设存在常数,将转化斜率相等,联立直线与圆,根据韦达定理,由直线与圆相交可求得范围.由斜率相等可求得的值,从而可判断结论【详解】(Ⅰ)圆Q的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0)设过P(0,2)且斜率为k的直线方程为y=kx+2∵|AB|=,∴圆心Q到直线l的距离d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,满足题意的直线l方程为y=-+2或y=-x+2(Ⅱ)将直线l的方程y=x+2代入圆方程得x2+(kx+2)2-12x+32=0整理得(1+k2)x2+4(k-3)x+36=0.①直线与圆交于两个不同的点A,B等价于△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 少儿培训积分制度
- 培训会议报备制度
- 商务局安全培训管理制度
- 教育公司培训制度
- 危险运输培训制度
- 欧洲足球运动员培训制度
- 教育培训结构理事会制度
- 培训学校会客室管理制度
- 外出培训教师汇报制度
- 培训班访客登记管理制度
- 2025云南昆明元朔建设发展有限公司第二批收费员招聘9人笔试考试参考题库及答案解析
- 国开本科《国际法》期末真题及答案2025年
- 幼儿园大虾课件
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及完整答案详解1套
- 2025新疆能源(集团)有限责任公司共享中心招聘备考题库(2人)带答案详解(完整版)
- 2026年中考作文备考之10篇高分考场范文
- 2025年自考专业(学前教育)真题附完整答案
- T∕CAMH 00002-2025 心理咨询师职业能力水平评价标准
- 比亚迪维修试车协议书
- 急诊科胸部创伤救治指南
- 安检员值机识图培训
评论
0/150
提交评论