版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届青海省黄南市高一数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,则下面关系中正确的是()A B.C. D.2.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航.已知海面上的大气压强是,大气压强(单位:)和高度(单位:)之间的关系为(为自然对数的底数,是常数),根据实验知高空处的大气压强是,则当歼20战机巡航高度为,歼16D战机的巡航高度为时,歼20战机所受的大气压强是歼16D战机所受的大气压强的()倍(精确度为0.01).A.0.67 B.0.92C.1.09 D.1.263.已知定义域为的函数满足,且,若,则()A. B.C. D.4.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.5.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的最大值是()A. B.C. D.6.若且,则下列不等式中一定成立的是A. B.C. D.7.已知,则的值为()A.-4 B.C. D.48.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个9.设,为正数,且,则的最小值为()A. B.C. D.10.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,若,求实数的值.12.函数的最小值为______13.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______14.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________15.已知正四棱锥的高为4,侧棱长为3,则该棱锥的侧面积为___________.16.若正数x,y满足,则的最小值是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.黄山市某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足关系:.肥料成本投入为元,其它成本投入(如培育管理,施肥等人工费)元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.设全集实数集,,(1)当时,求和;(2)若,求实数的取值范围19.已知函数,记.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,则说明理由.20.已知函数(1)求函数的最小正周期;(2)求函数在上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值21.已知正三棱柱,是的中点求证:(1)平面;(2)平面平面
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据元素与集合关系,集合与集合的关系判断即可得解.【详解】解:因为,,所以,.故选:D.2、C【解析】根据给定信息,求出,再列式求解作答.【详解】依题意,,即,则歼20战机所受的大气压强,歼16D战机所受的大气压强,,所以歼20战机所受的大气压强是歼16D战机所受的大气压强的倍.故选:C3、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A4、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.5、A【解析】分别求得,,,,,,,时,的最小值,作出的简图,因为,解不等式可得所求范围【详解】解:因为,所以,当时,的最小值为;当时,,,由知,,所以此时,其最小值为;同理,当,时,,其最小值为;当,时,的最小值为;作出如简图,因为,要使,则有解得或,要使对任意,都有,则实数的取值范围是故选:A6、D【解析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等7、A【解析】由题,解得.故选A.8、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.9、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.10、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,可得或,然后根据结果进行验证即可.【详解】由题可知:集合,所以或,则或当时,,不符合集合元素的互异性,当时,,符合题意所以【点睛】本题考查元素与集合的关系求参数,考查计算能力,属基础题.12、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:13、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题14、(2,0,0)(答案不唯一)【解析】利用空间两点间的距离求解.【详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)15、【解析】由高和侧棱求侧棱在底面射影长,得底面边长,从而可求得斜高,可得侧面积【详解】如图,正四棱锥,是高,是中点,则是斜高,由已知,,则,是正方形,∴,,,侧面积侧故答案为:【点睛】关键点点睛:本题考查求正棱锥的侧面积.在正棱锥计算中,解题关键是掌握四个直角三角形:如解析中图中,正棱锥的几乎所有量在这四个直角三角形中都有反应16、##【解析】由基本不等式结合得出最值.【详解】(当且仅当时,等号成立),即最小值为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(2)当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元【解析】(1)用销售收入减去成本求得的函数关系式.(2)结合二次函数的性质、基本不等式来求得最大利润以及此时对应的施肥量.小问1详解】由已知得:,故fx【小问2详解】若,则,此时,对称轴为,故有最大值为.若,则,当且仅当,即时等号成立,此时,有最大值为,综上有,有最大值为750,∴当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元.18、(1),;(2).【解析】把代入集合B,求出集合B的解集,再根据交集和并集的定义进行求解;因为,可知,求出,再根据子集的性质进行求解;【详解】(1)由题意,可得,当时,,则,若,则或,、当时,,满足A.当时,,又,则综上,【点睛】本题主要考查了交集和并集的定义以及子集的性质,其中解答中熟记集合的运算,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.19、(1);(2)奇函数,理由见解析;(3)不存在,理由见解析.【解析】(1)分别求f(x)和g(x)定义域,F(x)为这两个定义域的交集;(2)先判断定义域是否关于原点对称,再判断F(-x)与F(x)的关系;(3)先根据定义域和值域求出m,n,a的范围,再利用单调性将问题转化为方程有解问题.【小问1详解】由题意知要使有意义,则有,得所以函数的定义域为:【小问2详解】由(1)知函数F(x)的定义域为:,关于原点对称,函数为上的奇函数.【小问3详解】,假设存在这样的实数,则由可知令,则在上递减,在上递减,是方程,即有两个在上的实数解问题转化为:关于的方程在上有两个不同的实数解令,则有,解得,又,∴故这样的实数不存在.20、(1);(2)【解析】【试题分析】(1)先运用三角变换公式化简,再用周期公式求解;(2)借助所给定义域内的变量的取值范围结合三角函数的图象探求..(1).(2).点睛:本题旨在考查二倍角正弦、余弦公式、两角和差的正弦公式以及正弦函数的图象和性质等有关知识的综合运用.第一问时,先借助二倍角的正弦、余弦公式及两角和的正弦公式将其化简,再运用周期公式求解;解答第二问时,则借助题设中提供的定义域进行分析推证,最后借助正弦函数的图象求出其最大值和最小值.21、(1)见解析(2)见解析【解析】(1)连接,交于点,连结,由棱柱的性质可得点是的中点,根据三角形中位线定理可得,利用线面平行的判定定理可得平面;(2)由正棱柱的性质可得平面,于是,再由正三角形的性质可得,根据线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结论.试题解析:(1)连接,交于点,连结,因为正三棱柱,所以侧面是平行四边形,故点是的中点,又因为是的中点,所以,又因为平面,平面,所以平面(2)因为正三棱柱,所以平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省驻马店市汝南县双语学校、清华园学校2025-2026学年八年级上学期1月期末考试历史试卷(含答案)
- 江苏省苏州市姑苏区光华中学2025-2026学年七年级上学期期末测试历史卷(含答案)
- 文秘试题及答案
- 网约车考试题库及答案
- 2022~2023质量员考试题库及答案解析第117期
- 2021年部编人教版一年级语文上册期中测试卷(1套)
- 公司实习总结15篇
- 营口小升初数学综合测试卷及参考答案
- 电气设备选型技术要领
- 生理解剖考试题型及答案
- 2025年中国高考评价体系深度分析解读课件
- AQ 3002-2005 阻隔防爆撬装式汽车加油(气)装置技术要求
- 手卫生规范与标准预防
- 胃癌术后快速康复的护理
- 马工程社会学概论考试重点
- 钢筋混凝土圆管涵圆管计算程序(2020规范)
- DL∕T 2340-2021 大坝安全监测资料分析规程
- 《陆上风电场工程概算定额》NBT 31010-2019
- GB/T 13789-2022用单片测试仪测量电工钢带(片)磁性能的方法
- GB/T 33092-2016皮带运输机清扫器聚氨酯刮刀
- 中学主题班会课:期末考试应试技巧点拨(共34张PPT)
评论
0/150
提交评论