版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省三河市第九中学2026届高二数学第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与平行,则m的值为()A.-2 B.-1或-2C.1或-2 D.12.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.3.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.4.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.5.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.6.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.7.已知命题p:,总有,则为()A.,使得 B.,使得C.,总有 D.,总有8.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知向量,,则()A. B.C. D.10.如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是()A.直线 B.圆C.双曲线 D.抛物线11.正方体的棱长为,为侧面内动点,且满足,则△面积的最小值为()A. B.C. D.12.下列函数是偶函数且在上是减函数的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设数列满足且,则________.数列的通项=________.14.已知球的表面积是,则该球的体积为________.15.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.16.已知为抛物线的焦点,为抛物线上的任意一点,点,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来某村制作的手工艺品在国内外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(ⅰ)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ⅱ)若3位行家中仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关.若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级;若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(ⅲ)若3位行家中有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立(1)求一件手工艺品质量为B级的概率;(2)求81件手工艺品中,质量为C级的手工艺品件数的方差;(3)求10件手工艺品中,质量为D级的手工艺品最有可能是多少件?18.(12分)已知椭圆的短轴长为2,左、右焦点分别为,,过且垂直于长轴的弦长为1(1)求椭圆C的标准方程;(2)若A,B为椭圆C上位于x轴同侧的两点,且,共线,求四边形的面积的最大值19.(12分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.20.(12分)如图,在三棱柱中,平面,,.(1)求证:平面;(2)点M在线段上,且,试问在线段上是否存在一点N,满足平面,若存在求的值,若不存在,请说明理由?21.(12分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.22.(10分)已知椭圆C与椭圆有相同的焦点,且长轴长为4(1)求C的标准方程;(2)直线,分别经过点与C相切,切点分别为A,B,证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用两直线平行的判定有,即可求参数值.【详解】由题设,,可得或.经验证不重合,满足题意,故选:C.2、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B3、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.4、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.5、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.6、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.7、B【解析】由含有一个量词的命题的否定的定义求解.【详解】因为命题p:,总有是全称量词命题,所以其否定为存在量词命题,即,使得,故选:B8、B【解析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B9、D【解析】按空间向量的坐标运算法则运算即可.【详解】.故选:D.10、D【解析】由到直线的距离等于到点的距离可得到直线的距离等于到点的距离,然后可得答案.【详解】因为到直线的距离等于到点的距离,所以到直线的距离等于到点的距离,所以动点的轨迹是以为焦点、为准线的抛物线故选:D11、B【解析】建立空间直角坐标系如图所示,设由,得出点的轨迹方程,由几何性质求得,再根据垂直关系求出△面积的最小值【详解】以点为原点,分别为轴建立空间直角坐标系,如图所示:则,,设所以,得,所以因为平面,所以故△面积的最小值为故选:B12、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、①.5②.【解析】设,根据题意得到数列是等差数列,求得,得到,利用,结合“累加法”,即可求得.【详解】解:由题意,数列满足,所以当时,,,解得,设,则,且,所以数列是等差数列,公差为,首项为,所以,即,所以,当时,可得,其中也满足,所以数列的通项公式为.故答案为:;.14、【解析】设球的半径为r,代入表面积公式,可解得,代入体积公式,即可得答案.【详解】设球的半径为r,则表面积,解得,所以体积,故答案为:【点睛】本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.15、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:16、【解析】由抛物线的几何性质知:,由图知为的最小值,求长度即可.【详解】点是抛物线的焦点,其准线方程为,作于,作于,∴,当且仅当为与抛物线的交点时取得等号,∴的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)2件【解析】(1)根据相互独立事件的概率公式计算可得;(2)首先求出一件手工艺品质量为C级的概率,设81件手工艺品中质量为C级的手工艺品是X件,则,再根据二项分布的方差公式计算可得;(3)首先求出一件手工艺品质量为D级的概率,设10件手工艺品中质量为D级的手工艺品是ξ件,则,根据二项分布的概率公式求出的最大值,即可得解;【小问1详解】解:一件手工艺品质量为B级的概率为【小问2详解】解:一件手工艺品质量为C级的概率为,设81件手工艺品中质量为C级的手工艺品是X件,则,所以【小问3详解】解:一件手工艺品质量为D级的概率为,设10件手工艺品中质量为D级的手工艺品是ξ件,则,则,由解得,所以当时,,即,由解得,所以当时,,所以当时,最大,即10件手工艺品中质量为D级的最有可能是2件18、(1)(2)2【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)延长,交椭圆C于点.设出直线的方程并与椭圆方程联立,化简写出根与系数关系,根据对称性求得四边形的面积的表达式,利用换元法,结合基本不等式求得四边形的面积的最大值.【小问1详解】由题可知,即,因为过且垂直于长轴的弦长为1,所以,所以所以椭圆C的标准方程为【小问2详解】因为,共线,所以延长,交椭圆C于点.设,由(1)可知,可设直线的方程为联立,消去x可得,所以,由对称性可知设与间的距离为d,则四边形的面积令,则.因为,当且仅当时取等号,所以,即四边形的面积的最大值为2【点睛】在椭圆、双曲线、抛物线中,求三角形、四边形面积的最值问题,求解策略是:首先结合弦长公式、点到直线距离公式等求得面积的表达式;然后利用基本不等式、二次函数的性质等知识来求得最值.19、(1)(2)证明见解析【解析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立MN方程和E的轨迹方程得根与系数的关系,根据解出k与m的关系即可以判断MN过定点;最后再考虑MN斜率不存在时是否也过该定点即可.【小问1详解】由圆A:可得(,∴圆心A(-,0),圆的半径r=8,,,可得,,,由椭圆的定义可得:点E的轨迹是以A(,0)、B(,0)为焦点,2a=8的椭圆,即a=4,c=,∴=16-7=9,∴动点E的轨迹方程为;【小问2详解】由(1)知,P(0,3),设,当直线MN的斜率存在时,设直线MN的方程为:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,当m=3时,直线MN的方程为:,此时过点P(0,3)不符合题意,∴k=m+3,∴直线MN的方程为:此时直线MN过点(-1,-3),当直线MN的斜率不存在时,,,解得,此时直线MN的方程为:,过点(-1,-3),综上所述:直线MN过定点(-1,-3).20、(1)证明见解析;(2)存在,的值为.【解析】(1)先证明,再证明,由线面垂直的判定定理求证即可;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,求出平面的法向量,由平面,利用向量法能求出的值【详解】(1)在三棱柱中,平面ABC,,.∴,,,∵,∴平面,∵平面,∴,∵,∴平面.(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,如图,,,,,所以,,设平面的法向量,则,取,得,点M在线段上,且,点N在线段上,设,,设,则,,,即,解得,,,∵,∴,解得.∴的值为.21、(1)(2)不一定共线,理由见解析【解析】(1)由椭圆定义可得a,利用∽△BOA可解;(2)考察轴时的情况,分析可知M,,N不一定共线.【小问1详解】由题意得,,设,,代入椭圆C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墨镜促销活动策划方案(3篇)
- 平安融易江汉开发区分公司公开招聘客服专员10人备考考试题库及答案解析
- 2026广西柳州市柳江区禁毒委员会办公室招聘编外人员1人备考考试试题及答案解析
- 2026年上半年玉溪师范学院招聘人员(6人)参考考试题库及答案解析
- 2026浙江杭州珠江体育文化发展有限公司招聘备考考试试题及答案解析
- 2026新疆乌市第126中学慈湖初中部急聘初中物理老师备考考试题库及答案解析
- 2026上半年云南事业单位联考云南文化艺术职业学院招聘人员考试备考试题及答案解析
- 孕期血压监测与护理指导
- 2026年上半年黑龙江省科学院事业单位公开招聘工作人员24人笔试参考题库及答案解析
- 2026年宁德市消防救援支队政府专职消防队员招聘65人备考考试题库及答案解析
- 验货执行合同书
- 2026年张家界航空工业职业技术学院单招职业技能笔试备考试题及答案详解
- 终止妊娠药物课件
- 2025年无人驾驶公共交通项目可行性研究报告
- 北京市朝阳区2026届高三上英语期末考试试题含解析
- 亚急性硬化性全脑炎2-
- GB/T 6462-2025金属和氧化物覆盖层厚度测量显微镜法
- 工程量鉴定合同范本
- 建筑工程施工工艺详细操作手册
- 外科院感课件
- 2025国家核安保技术中心招聘笔试历年常考点试题专练附带答案详解试卷3套
评论
0/150
提交评论