2026届保定市重点中学数学高一上期末教学质量检测试题含解析_第1页
2026届保定市重点中学数学高一上期末教学质量检测试题含解析_第2页
2026届保定市重点中学数学高一上期末教学质量检测试题含解析_第3页
2026届保定市重点中学数学高一上期末教学质量检测试题含解析_第4页
2026届保定市重点中学数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届保定市重点中学数学高一上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,,,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为()A.6 B.C.12 D.2.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.3.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则6.已知幂函数过点,则在其定义域内()A.为偶函数 B.为奇函数C.有最大值 D.有最小值7.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.四棱柱中,,,则与所成角为A. B.C. D.9.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.10.若,则有()A.最小值为3 B.最大值为3C.最小值为 D.最大值为二、填空题:本大题共6小题,每小题5分,共30分。11.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______12.已知,则的最小值为_______________.13.函数的反函数为___________.14.已知函数有两个零点分别为a,b,则的取值范围是_____________15.计算:______16.命题“,”的否定是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,、分别是的边、上的点,且,,交于.(1)若,求的值;(2)若,,,求的值.18.(1)计算:;(2)已知,,求证:19.已知函数,在区间上有最大值4,最小值1,设(1)求的值;(2)不等式在上恒成立,求实数的取值范围;(3)方程有三个不同的实数解,求实数k的取值范围20.已知直线与圆相交于点和点(1)求圆心所在的直线方程;(2)若圆心的半径为1,求圆的方程21.已知函数.(1)用函数单调性定义证明:函数在区间上是严格增函数;(2)函数在区间上是单调函数吗?为什么?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据海伦秦九韶公式和基本不等式直接计算即可.【详解】由题意得:,,当且仅当,即时取等号,故选:B2、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D3、B【解析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【点睛】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.4、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.5、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A6、A【解析】设幂函数为,代入点,得到,判断函数的奇偶性和值域得到答案.【详解】设幂函数为,代入点,即,定义域为,为偶函数且故选:【点睛】本题考查了幂函数的奇偶性和值域,意在考查学生对于函数性质的综合应用.7、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.8、D【解析】四棱柱中,因为,所以,所以是所成角,设,则,+=,所以,所以+=,所以,所以选择D9、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性10、A【解析】利用基本不等式即得,【详解】∵,∴,∴,当且仅当即时取等号,∴有最小值为3.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、75【解析】由题意,先算出,由此可算出一个新丸体积变为需经过的天数.【详解】由已知,得,∴设经过天后,一个新丸体积变为,则,∴,∴,故答案为:75.12、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.13、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.14、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:15、【解析】根据幂的运算法则,根式的定义计算【详解】故答案为:16、.【解析】全称命题的否定:将任意改为存在并否定原结论,即可知原命题的否定.【详解】由全称命题的否定为特称命题,所以原命题的否定:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用平面向量加法的三角形法则可求出、的值,进而可计算出的值;(2)设,设,根据平面向量的基本定理可得出关于、的方程组,解出这两个未知数,可得出关于、的表达式,然后用、表示,最后利用平面向量数量积的运算律和定义即可计算出的值.【详解】(1),,,因此,;(2)设,再设,则,即,所以,,解得,所以,因此,.【点睛】本题考查利用平面向量的基本定理求参数,同时也考查了平面向量数量积的计算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中等题.18、(1)13;(2)证明见解析.【解析】(1)根据指数和对数的运算法则直接计算可得;(2)根据对数函数的单调性分别求出范围和范围可判断.【详解】(1)原式(2)因为在上递减,在上递增,所以,,故因为,且在递增,所以,即所以,即【点睛】本题考查对数函数单调性的应用,解题的关键是利用对数函数的单调性求出范围,进而可比较大小.19、(1);(2);(3).【解析】(1)根据题意,结合二次函数的图象与性质,列出方程组,即可求解;(2)由题意得到,根据转化为在上恒成立,结合二次函数的性质,即可求解;(3)化简得到,令,得到,根据题意转化为方程有两个根且,结合二次函数的性质,即可求解.【详解】(1)由题意,函数,可得对称轴为,当时,在上为增函数,可得,即,解得;当时,在上为减函数,可得,即,解得,因为,所以.(2)由(1)可得,所以,方程化为,所以,令,则,因为,可得,令,当时,可得,所以,即实数的取值范围是.(3)方程,可化为,可得且,令,则方程化为,方程有三个不同的实数解,所以由的图象知,方程有两个根且,记,则或,解得,综上所述,实数的取值范围是.20、(1)x-y=0(2)【解析】本试题主要是考查了直线与圆的位置关系的运用,.以及圆的方程的求解(1)PQ中点M(,),,所以线段PQ的垂直平分线即为圆心C所在的直线的方程:(2)由条件设圆的方程为:,由圆过P,Q点得得到关系式求解得到.则或故圆的方程为21、(1)证明见解析;(2)不是单调函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论