版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市清华大学附中数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.2.在数列中,,则此数列最大项的值是()A.102 B.C. D.1083.()A.-2 B.-1C.1 D.24.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.5.下列导数运算正确的是()A. B.C. D.6.复数的共轭复数的虚部为()A. B.C. D.7.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.8.在平面上有一系列点,对每个正整数,点位于函数的图象上,以点为圆心的与轴都相切,且与彼此外切.若,且,,的前项之和为,则()A. B.C. D.9.平行六面体中,若,则()A. B.1C. D.10.在△ABC中,角A,B,C的对边分别为a,b,c,若,则△ABC()A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.是锐角或直角三角形11.若的解集是,则等于()A.-14 B.-6C.6 D.1412.设直线,.若,则的值为()A.或 B.或C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.14.将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)15.已知命题:,总有.则为______16.已知函数的导函数为,,,则的解集为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值18.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围19.(12分)已知数列的前n项和为,满足,(1)求证:数列是等比数列,并求数列的通项公式;(2)设,为数列的前n项和,①求;②若不等式对任意的正整数n恒成立,求实数的取值范围20.(12分)在等差数列中,(1)求数列的通项公式;(2)设数列是首项为1,公比为2的等比数列,求数列的前项和.21.(12分)在棱长为1的正方体ABCD-A1B1C1D1中,求平面ACD1的一个法向量.22.(10分)如图,四棱锥P-ABCD的底面是矩形,底面ABCD,,M为BC中点,且.(1)求BC;(2)求二面角A-PM-B的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.2、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D3、A【解析】利用微积分基本定理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分的计算,意在考查学生的计算能力.4、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C5、B【解析】利用基本初等函数的导数和复合函数的导数,依次分析即得解【详解】选项A,,错误;选项B,,正确;选项C,,错误;选项D,,错误故选:B6、B【解析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【详解】解:,所以其共轭复数为,其虚部为故选:B7、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.8、C【解析】根据两圆的几何关系及其圆心在函数的图象上,即可得到递推关系式,通过构造等差数列求得的通项公式,得出,最后利用裂项相消,求出数列前项和,即可求出.详解】由与彼此外切,则,,,又∵,∴,故为等差数列且,,则,,则,即,故答案选:.9、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.10、C【解析】由余弦定理确定角的范围,从而判断出三角形形状【详解】由得-cosC>0,所以cosC<0,从而C为钝角,因此△ABC一定是钝角三角形.故选:C11、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.12、A【解析】由两直线垂直可得出关于实数的等式,即可解得实数的值.【详解】因为,则,解得或.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.14、18,28【解析】根据等距抽样的性质确定剩下的两个号码即可.【详解】由于从30辆大巴车中抽取3辆车,故分组间距为10,又第一组的号码为08,所以其它两个号码依次是18,28故答案为:18,28.15、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.16、【解析】根据,构造函数,利用其单调性求解.【详解】因为,所以,令,则,,所以是减函数,又,即,,所以,所以,则的解集为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.18、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.19、(1)证明见解析,(2)①;②【解析】(1)由得到,即可得到,从而得证,即可求出的通项公式,从而得到的通项公式;(2)①由(1)可得,再利用错位相减法求和即可;②利用作差法证明的单调性,即可得到,即可得到,再解一元二次不等式即可;【小问1详解】证明:由,,当时,可得,解得,当时,,又,两式相减得,所以,所以,即,则数列是首项为,公比为的等比数列;所以,所以【小问2详解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即单调递增,所以,因为不等式对任意的正整数n恒成立,所以,即,解得或,即20、(1)(2)【解析】(1)根据等差数列条件列方程,即可求通项公式;(2)先由等比数列通项公式求出,解得,分组求和即可.【小问1详解】设等差数列的公差为,则,∴,由,∴,∴数列的通项公式为.【小问2详解】∵数列是首项为1,公比为2的等比数列,∴,即,∴,∴.21、【解析】建立空间直角坐标系,由向量法求法向量即可.【详解】如图,建立空间直角坐标系,则设平面ACD1的法向量.,又为平面ACD1的一个法向量,化简得令x=1,得y=z=1.平面ACD1的一个法向量.【点睛】本题主要考查了求平面的法向量,属于中档题.22、(1);(2).【解析】(1)根据给定条件推导证得,再借助直角三角形中锐角的正切列式求解作答.(2)由给定条件建立空间直角坐标系,借助空间向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆克孜勒苏柯尔克孜自治州2025-2026学年八年级上学期1月期末考试物理试卷(无答案)
- 辽宁省朝阳市2025-2026学年八年级上学期1月期末考试地理试卷(含答案)
- 湖南省衡阳市衡阳县2025-2026学年高二上学期期末质量检测(创新实验班)生物试卷(含答案)
- 化工作业安全培训
- 沿海公共航路指南2026
- 化工企业安全生产培训课件
- 飞行事故预防培训课件
- 钢结构节能减排技术措施
- 2026山东事业单位统考临沂市郯城县招聘综合类岗位29人备考考试试题及答案解析
- 2026浙江宁波市升力同创科技咨询服务有限公司招聘1人参考考试题库及答案解析
- 安装水管安全协议合同
- 中国邮政集团公司战略合作协议书范本
- 重庆市渝北区2023-2024学年五年级上学期语文期末试卷(含答案)
- 2024子宫内膜癌分子分型临床应用中国专家共识(完整版)
- 《煤矿低浓度瓦斯管道输送安全保障系统设计规范》
- 换电柜维护培训课件
- 土石方工程挂靠合同
- 招聘会会展服务投标方案(技术标 )
- 企业标准-格式模板
- 软件售后服务人员提成方案附表
- 五年级上册道德与法治期末测试卷新版
评论
0/150
提交评论