版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级数学上册第二十四章圆专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(
)A.70° B.50° C.20° D.40°2、下列多边形中,内角和最大的是(
)A. B. C. D.3、如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()A.120° B.125° C.130° D.135°4、下列图形为正多边形的是()A. B. C. D.5、已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.166、一个商标图案如图中阴影部分,在长方形中,,,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是(
)A. B.C. D.7、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.60π B.85π C.95π D.169π8、已知扇形的圆心角为,半径为,则弧长为(
)A. B. C. D.9、如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是(
)A.为等腰三角形 B.与相互垂直平分C.点A、B都在以为直径的圆上 D.为的边上的中线10、如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.21第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知的半径为2,内接于,,则__________.2、如图,⊙O的直径AB=26,弦CD⊥AB,垂足为E,OE:BE=5:8,则CD的长为______.3、如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=_____°.4、如图,在平面直角坐标系中,点A(0,1)、B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是____.5、如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD的度数为35°,则的度数是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.2、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,求该圆锥的母线长.3、在中,,,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90°得到线段,连接,.(1)如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;(2)如图2,的延长线交于点M,点N在上,且,求证:;(3)如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值.4、已知的半径是.弦.求圆心到的距离;弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由.5、如图,在中,,的中点.(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上.-参考答案-一、单选题1、D【解析】【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【考点】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.2、D【解析】【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A、是一个三角形,其内角和为180°;B、是一个四边形,其内角和为360°;C、是一个五边形,其内角和为540°;D、是一个六边形,其内角和为720°;∴内角和最大的是六边形;故选D.【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.3、B【解析】【分析】利用内心的性质得∠OBC=∠ABC,∠OCB=∠ACB,再根据三角形内角和计算出∠OBC+∠OCB=55°,然后再利用三角形内角和计算∠BOC的度数.【详解】解:∵O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故选:B.【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.4、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【详解】根据正多边形的定义,得到D中图形是正五边形.故选D.【考点】本题考查了正多边形,关键是掌握正多边形的定义.5、B【解析】【分析】⊙O最长的弦就是直径从而不难求得半径的长.【详解】解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键.6、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案.【详解】解:作辅助线DE、EF使BCEF为一矩形.则S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴阴影部分的面积=24-(16-4π)=.故选:D.【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的.7、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据弧长公式得到=10π,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2π•r=10π,解得r=5,然后计算底面积与侧面积的和.【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10π,解得R=12,2π•r=10π,解得r=5,所以该圆锥的全面积=π•52+•10π•12=85π.故选B.【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、D【解析】【分析】根据扇形的弧长公式计算即可.【详解】∵扇形的圆心角为30°,半径为2cm,∴弧长cm故答案为:D.【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键.9、B【解析】【分析】连接OB,OC,令M为OP中点,连接MA,MB,证明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出为等腰三角形,可判断A;根据△OBP与△OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明△OBC≌△OAC,可得PC⊥AB,根据△BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案.【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,∵B,C为切点,∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴为等腰三角形,故A正确;∵△OBP与△OAP为直角三角形,OP为斜边,∴PM=OM=BM=AM∴点A、B都在以为直径的圆上,故C正确;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA为等腰三角形,∴为的边上的中线,故D正确;无法证明与相互垂直平分,故选:B.【考点】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键.10、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,则△ABC的面积是:×AD×BC=×3×(3+4)=.故选A.【考点】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.二、填空题1、【解析】【详解】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、24【解析】【分析】连接OC,由题意得OE=5,BE=8,再由垂径定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【详解】解:连接OC,如图所示:∵直径AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案为:24.【考点】本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键.3、35【解析】【分析】如图(见解析),连接AD,先根据圆周角定理可得,从而可得,再根据圆周角定理可得,由此即可得.【详解】如图,连接AD∵AB是⊙O的直径∴,即又由圆周角定理得:∵∴故答案为:35.【考点】本题考查了圆周角定理,熟记圆周角定理是解题关键.4、【解析】【分析】根据题意在中求出,利用垂径定理得出结果.【详解】由题意,在中,,,由垂径定理知,,故答案为:.【考点】本题考查了勾股定理及垂径定理,熟练掌握垂径定理是解决本题的关键.5、105°.【解析】【分析】连接OD、OE,根据圆心角、弧、弦的关系定理求出∠AOD=35°,根据等腰三角形的性质和三角形内角和定理计算即可.【详解】解:连接OD、OE,∵的度数为35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度数是105°.故答案为105°.【考点】本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.三、解答题1、(1)证明见解析(2)2【解析】【详解】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径.试题解析:(1)证明:平分又平分连接,是直径.平分∴半径为2、【解析】【分析】根据侧面展开图的弧长等于底面周长列方程即可.【详解】解:圆锥的底面周长,由题意可得,解得,所以该圆锥的母线长为.【考点】本题考查了圆锥的有关计算,解题关键是熟知圆锥的侧面展开图的弧长等于圆锥底面周长和圆锥母线等于圆锥侧面展开图半径,根据题意建立方程.3、(1)2(2)见解析(3)【解析】【分析】(1)根据已知条件可得为的中点,证明,进而根据直角三角形斜边上的中线等于斜边的一半即可求解;(2)过点作交的延长线于点,证明,,可得,进而根据,即可得出结论,(3)根据(2)可知,当点在线段上运动时,点在平行于的线段上运动,根据题意作出图形,根据点到圆上的距离求最值即可求解.(1)如图,连接将线段绕点E顺时针旋转90°得到线段,是等腰直角三角形,P为FG的中点,,,,,D为的中点,,,,,在中,;(2)如图,过点作交的延长线于点,,,,,是等腰直角三角形,,,在与中,
,,,,又,,
,,,,,
又,,,,,,,;(3)由(2)可知,则当点在线段上运动时,点在平行于的线段上运动,将沿翻折至所在平面内,得到,E为的中点,,,则点在以为圆心为半径的圆上运动,当三点共线时,最小,如图,当运动到与点重合时,取得最小值,.如图,当点运动到与点重合时,取得最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省绵阳市平武县2025-2026学年八年级上学期1月期末考试道德与法治试卷(含答案)
- 2025~2026学年济南市天桥区九年级物理第一学期期末考试试题以及答案(含答案)
- 五年级下册数学题目及答案
- 无领导讨论题目及答案
- 危险化学品安全考试题及答案
- 初中前端培训课件
- 泵送混凝土施工技术操作要点
- 三菱PLC技术与应用实训教程(FX3U)习题答案 模块4 精英篇(高级技师)
- 实体经济政治试题及答案
- 贵州省遵义市汇川区2024-2025学年八年级上学期期末地理试题(含答案)
- 代办烟花爆竹经营许可证协议合同
- 国企员工总额管理办法
- 企业级AI大模型平台落地框架
- 常见传染病的预防与护理
- TD/T 1036-2013土地复垦质量控制标准
- 苏教版六年级数学上册全册知识点归纳(全梳理)
- 车位包销合同协议模板
- 病历书写规范版2025
- 中铁物资采购投标
- 泄漏管理培训课件
- 非遗传承人激励机制探索-深度研究
评论
0/150
提交评论