版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Foreword
FollowingtherequirementsofNoticeonPrintingtheDevelopmentandRevisionPlanofNationalEngineeringConstructionStandardsin2011(JianBiao〔2011〕No.17)issuedbytheMinistryofHousingandUrban-RuralDevelopment,thecodecompilationorganizationsdeveloptheCodebasedonintensiveinvestigationandstudy,summaryofpracticeexperiences,reviewofrelevant'prominentinternationalstandards,andextensiveconsultation.
Thecodecomprises14chaptersandsupplementarycommentaryontheprovisions.Themaintechnicalcontentsinclude:GeneralProvisions;TermsandSymbols;Materials;BasicRequirements;CalculationforUltimateLimitStatesinPersistentSituations;CaleulationforServiceabilityLimitStatesinPersistentSituations;StructureandDetailing;FabricationofSteelTubesofArchRibs;Welding;CorrosionProtectionCoating;ErectionofSteelTubeArchRibs;FillingofConcrete;ConstructionofOtherStructures;Maintenance.
Theprovisionsthatareprintedinboldtypearemandatoryprovisionsandmustbeenforcedstrictly.
TheMinistryofHousingandUrban-RuralDevelopmentsisinchargeoftheadministrationoftheCodeandtheexplanationofthemandatoryprovisions.FuzhouUniversityisresponsiblefortheexplanationofspecifictechnicalcontents.Alrelevantorganizationsarekindlyrequestedtofeedbackanyquestions,commentsandsuggestionsassociatedwiththeimplementationoftheCodebythemanagementgroupoftheCodeinCollegeofCivilEngineeringatFuzhouUniversity(Address:No.2XueyuanRoad,UniversityTown,Minhou,Fuzhou,Fujian350108,China).
ChiefDevelopmentOrganizations:
FuzhouUniversity
CSCECStraitConstructionandDevelopmentCo.,Ltd
ParticipatingDevelopmentOrganizations:
ShenzhenMunicipalDesignandResearchInstituteCo.,Ltd
SichuanProvincialTransportDepartmentHighwayPlanning,Survey,DesignandResearchInstitute
GuangxiRoadandBridgeEngineeringCorporation
ResearchInstituteofHighwayMinistryofTransport
ChangshaUniversityofScienceandTechnology
Chang'AnUniversity
WuhanUniversityofTechnology
HarbinInstituteofTechnology
WuchuanHeavyEngineeringCo.,Ltd
ChiefDraftingStaff:
ChenBaochunWuPingchunWeijiangangWuQingxiongMouTingminChenYiyanChenGuanghuiDingQingjunRuanJiashunZhangJianrenZhaXiaoxiongZhangJinquanLiuYongjianJiaoAnliang
ChiefReviewingStaff:
ZhengJielianHuangQiaoFanWenliPengYuanchengMaBiao
XuYongZhaoLinqiangCaoRuiLongYue
·1·
Contents
1GeneralProvisions (1)
2TermsandSymbols (2)
2.1Terms (2)
2.2Symbols (3)
3Materials (7)
3.1Steel (7)
3.2Concrete (7)
3.3Concrete-FilledSteelTube (8)
3.4OtherMaterials (8)
4BasicRequirements (10)
4.1GeneralRequirements (10)
4.2Actions (11)
4.3StructuralCalculation (12)
5CalculationforUltimateLimitStatesinPersistentSituations (13)
5.1GeneralRequirements (13)
5.2StrengthCalculationforArchRibs (13)
5.3StabilityofArchRib (17)
5.4SuspendersandTies (20)
6CalculationforServiceabilityLimitStatesinPersistentSituations (22)
7StructureandDetailing (23)
7.1StructureTypes (23)
7.2MainArch (23)
7.3ArchSeatsandSpandrelColumns (26)
7.4SuspendersandTies (26)
7.5DeckSystem (27)
8FabricationofSteelTubesofArchRibs (28)
8.1FabricationofSteelTubes (28)
8.2AssemblingofSteelTubesofArchRibs (28)
8.3QualityInspectionforSteelTubeArchRibs (29)
9Welding (32)
10CorrosionProtectionCoating (34)
11ErectionofSteelTubeArchRibs (36)
11.1GeneralRequirements (36)
11.2ErectionandQualityInspectionofSteelTubeArchRibs (36)
12FillingofConcrete (38)
12.1GeneralRequirements (38)
12.2FillingofConcreteintoArchTubes (39)
·2·
12.3QualityInspectionafterFillingofConcrete (39)
13ConstructionofOtherStructures (41)
13.1GeneralRequirements (41)
13.2InstallationandQualityInspectionofSuspendersandTies (41)
14Maintenance (43)
14.1GeneralRequirements (43)
14.2InspectionandAssessment (43)
14.3MaintenanceofStructures (47)
ExplanationofWordinginThisCode (50)
ListofQuotedStandards (51)
·1·
1GeneralProvisions
1.0.1TheCodeisdevelopedtosatisfytherequirementsforbridgeengineeringconstructionandtoensurethatthedesign,constructionandmaintenanceofconcrete-filledsteeltubearchbridgesfollowstherequirementsforsafety,reliability,durability,practicability,technicaladvancement,andeconomicfeasibility.
1.0.2TheCodeisapplicabletothedesign,constructionandmaintenanceofconcrete-filledsteeltubearchbridgesinmunicipalandhighwayengineering.
1.0.3Thedesign,constructionandmaintenanceofconcrete-filledsteeltubearchbridgesshallnotonlycomplywiththeprovisionsspecifiedintheCode,butalsothosespecifiedinthecurrentrelevantnationalstandards.
·2·
2TermsandSymbols
2.1Terms
2.1.1Concrete-filledsteeltube(CFST)archbridge
Abridgewhosemainload-carryingcomponent(s)is(are)concrete-filledsteeltube(s)withacircularcross-section,whichserve(s)asrib(s)foranarch.
2.1.2CFSTarchrib
Anarchrib,whosemainload-carryingelement(s)is(are)concrete-filledsteeltube(s).
2.1.3Steeltubearchrib
Anarchribofahollowsteeltubewithoutfillingofconcreteinside.
2.1.4Concreteintube(coreconcrete)Concretethatisfilledinasteeltube.
2.1.5CFSTmember
AmemberthatismadeofCFST,inwhichthesteeltubeandtheconcretecoreactcompositelytoresistloads.
2.1.6Singletubearchrib
AnarchribthatisformedbyasingleCFSTmemberwithacircularsection.
2.1.7Dumbbell-shapedarchrib
AnarchribthatisformedbytwotopandbottomCFSTmemberswithcircularsectionconnectedbytwosteelwebplates.
2.1.8Trussarchrib
AnarchribthatisformedbytopandbottomCFSTchordsconnectedbywebmemberstoformtrusses.
2.1.9LacedCFSTcolumn
AlacedcolumnthatisformedbymultipleCFSTmembersconnectedtransverselybyhollowsteeltubes.
2.1.10Rigid-frametiedarch
Anarchstructurewhoseribisrigidlyconnectedtopiersandthehorizontalthrustispartiallybalancedbypre-stressedties.
2.1.11Rigid-frametiedthrougharch
Abridgestructurewhosedecksystemissuspendedbelowtherigid-frametiedarch.
2.1.12Rigid-frametiedhalf-througharch
Amulti-spanbridgestructurewhosedecksystematthemainspanispartiallysuspendedbelowtherigid-frametiedarch,whileitsdecksystemsattwosidespansaresupportedabovetwocantileverhalfarches.Thetiesareanchoredoneachendofthesidespans.Itisalsoknownasaflying-birdarch.
2.1.13Confinement(hooping)coefficient
Acoefficientaccountsfortheconfinementeffectofthesteeltubeontheconcretecore.
·3·
2.1.14InitialstressorPreloadingofsteeltube
TheinitialaxialstressinasteeltubecausedbyloadsduetosequentialconstructionproceduresbeforecompositeactionisfullyformedintheCFSTmembers,itisalsocalledinitialstressorpreloadingofCFST.
2.1.15Initialstressingratioorpreloadingratio
Theratioofpreloadingstresstotheyieldstressofthesteeltube.
2.1.16Computationalclosuretemperature
TheaveragetemperatureinthecrosssectionatthemomentofzerothermalstresswhichisconvertedfromthestressesintheCFSTarchribwhentheconcretecorereachesitsdesignstrength.
2.1.17Intersectionjoint
IntersectionlineweldingjointconnectingthemainCFSTtube(chord)withthebranchtube(webtruss).
2.1.18Debonding
Thephenomenonofseparationofthesteeltubefromtheconcretecorethatareattributedtofactorsotherthanqualityissuesincludingthermalgradientandshrinkageoftheconcretecore.
2.1.19Debonding(angle)rate
Thecentralangle(ratio)correspondingtothedebondingregioninthecrosssectionofCFSTmembers.
2.2Symbols
2.2.1Actions(loadsandresistances):
N——Designvalueofaxialforce;
N₁,N₂——Factoredaxialforcesonthetwotubesinadumbbell-shapedarchrib;M——Designvalueofsectionalmoment;
M₁,M₂——Factoredsectionalmomentsonthetwotubesinadumbbell-shapedarchrib;N——Designvalueofaxialcompressiveforcecombination;
S——Designvalueofcombinationofactions;
R——Designvalueofresistanceofacomponent;
R(·)——Loadresistancefunctionofacomponent;
V₁——Designvalueofaxialforceofwebtruss.
2.2.2Materialproperties:
(EA)s——DesigncompressivestiffnessofcompositesectionofCFSTarchrib;(EI)s——DesignflexuralstiffnessofcompositesectionofCFSTarchrib;
(EA)sc1———DesigncompressivestiffnessofgrosssectionofCFSTarchrib;
(EI)sc1——DesignflexuralstiffnessofgrosssectionofCFSTarchrib;
(EA)sc2——GrosscompositecompressivestiffnessofsingletubeCFSTmember;
(EI)sc2——GrosscompositeflexuralstiffnessofsingletubeCFSTmember;
E.——Elasticmodulusofconcrete;
E₅——Elasticmodulusofsteel;
fd——Designcompressivestrengthvalueofconcrete;
fck—Characteristiccompressivestrengthvalueofconcrete;
·4·
fa——Designstrengthvalueofmaterials;
fva——Designshearstrengthvalueofsteel;
fs——Designtensile,compressiveandbendingstrengthvaluesofsteel;
fa——Designtensilestrengthvalueofconcrete;
fik——Characteristictensilestrengthvalueofconcrete;
fy——Characteristicstrengthvalueofsteel;
G.——Shearmodulusofconcrete;
G₅——Shearmodulusofsteel;
N₀——DesignaxialcompressivestrengthofsingletubeCFSTsection;
Nó——DesignaxialcompressivestrengthofsingletubeCFSTsectionconsideringdebonding;
N——DesignaxialcompressivestrengthofeachCFSTsectioninthearchrib;
No——Designaxialcompressivestrengthoftheithtrussmemberintrussarchrib;
No₁——DesigncompressivestrengthofeccentricallyloadedsingletubeCFSTmember;
No₂——DesignstabilityresistanceofeccentricallyloadedsingletubeCFSTmember;
ND——Designcompressivestrengthofdumbbell-shapedorlacedCFSTmember;
Np——Designcompressivestrengthofeccentrically-loadeddumbbell-shapedorlacedCFSTmember;
ND₂——Designstabilityresistanceofeccentrically-loadeddumbbell-shapedorlacedCFSTmember;
N——DesigncompressivestrengthofconnectingsteelwebplatesthatshareloadswithmainCFSTchords;
fpk———Characteristictensilestrengthofsuspendersorties;
α——LongitudinalthermalexpansioncoefficientofCFSTarchribsubjecttouniformtemperaturedistributiononitssection;
αs——Thermalexpansioncoefficientofsteel;
αc——Thermalexpansioncoefficientofconcrete;
Ps——Densityofsteel;
μc——Poisson'sratioofconcrete;
μs——Poisson'sratioofsteel;
σ——Stressinsuspendersorties;
0o——Preloadingstressofsteeltube.
2.2.3Geometricparameters:
aa——Designgeometricparameter;
A——ConvertedareaofCFSTchordsection;
A₆——Totalsectionalareaofhorizontalwebtrussesbetweenadjacentjoints;
A.——Cross-sectionalareaofconcretecore;
Aa——Totalsectionalareaofdiagonalwebtrussesbetweenadjacentjoints;
A——Cross-sectionalareaofconnectingsteelplate;
A,——Cross-sectionalareaofsteeltube;
A——SectionalareaofCFSTcompositemember;
As——Cross-sectionalareaofsteeltubeinCFSTarchrib;
·5·
Ac——Cross-sectionalareaofconcretecoreinCFSTarchrib;
a——DistancefromthecenterofindividualCFSTmembertothevirtualaxisy-yinlacedCFSTcolumn;
b——DistancefromthecenterofindividualCFSTmembertothevirtualaxisx-xinlacedCFSTcolumn;
D——Outerdiameterofsteeltube;
d——Diameterofsuspendersorties;
eo——Loadeccentricity;
f——Riseofarch;
f₁——Riseofarchabovedecksystem;
h₁——Centraldistanceoftwochordsinbendingplaneofdumbbell-shapedorlacedCFSTcolumn;
h₂——Depthofwebplateofdumbbell-shapedCFSTsection;
H——Depthofthecrosssectionofarchrib;r——Calculatedradiusofcrosssection;
i——Cross-sectionalradiusofgyration;
I.——Secondmomentofareaofconcretecoresection;
I₈——Secondmomentofareaofsteeltubesection;
Ic——SecondmomentofareaofcompositesectionofCFST;Is₁——Secondmomentofareaofsteelsection;
Ic——Secondmomentofareaofconcretesection;l——Lengthofcomponent;
L——Calculatedspanofarchbridge;
lo——Calculatedlengthofcomponent;Lo——Clearspanofarchrib;
L₀——Equivalentcalculatedlengthofarchrib;La——Lengthofsuspender;
L₂——Straightlengthofarchribsegment;
lax——CalculatedlengthofacomponentrelativetoaxisX;
loy——CalculatedlengthofacomponentrelativetoaxisY;
l₁——DistancebetweenadjacentjointsoflacedCFSTcolumn;
l₂——Longitudinaldistancebetweenstiffenersalongthewebplatesofdumbbell-shapedarchrib;re——Radiusofcrosssectionofconcretecore;
S——Lengthofarchaxis;
t——Thicknessofsteeltubeorinitialsettingtimeofconcrete;T——Calculatedclosuretemperature;
T₀——Additionaltemperatureincrease;
T₂8——Averageairtemperatureduring28daysafterfillingofconcrete;Eb——Boundeccentricityratio;
0——Anglebetweentwoadjacentarchribsegments;△——Gapbetweenbranchtubesinajoint.
·6·
2.2.4Coefficientsincalculationandothers:
β——Preloadingratioofsteeltube;
50,5——DesignandcharacteristicconfinementcoefficientsofCFSTmember,respectively;p——Loadeccentricityratio;
pc——SteelratioofCFSTsection;
x——Calculationcoefficient;
μ——Slendernesscoefficient;
μo——ImpactcoefficientofvehicularloadforCFSTarchrib;
γo——Importancecoefficientofbridgestructure;
η1——SectionalflexuralstiffnessratioofindividualCFSTchordtothewholeCFSTmember;
φ——Stabilityfactor;
φe——Reductionfactorofeccentricityratio;
λ——NominalslendernessratioofCFSTmember;
λn——Relativeslendernessratio;
λ*——ConvertedslendernessratiooflacedCFSTcolumn;
λ₁——NominalslendernessratioofindividualchordoflacedCFSTcolumn;
λ,λ,——NominalslendernessratiooflacedCFSTcolumnrelativetoX-axisandY-axis,respectively;
a——CoefficientconsideringtheeffectsofslendernessratiowhencalculatingtheresistanceofpreloadedCFSTmembersatultimatelimitstate;
fo——FrequencyofthefirstverticalmodeofvibrationofaCFSTarchbridge;
k——ReductionfactorforcreepoftheloadcapacityofCFSTmember;
K,——Influencefactorforpreloadingratio;
k₁——Loadfactor;
k₂——Trafficlanecoefficient;
k₃—Conversioncoefficientofdesignaxialcompressivestrength;
K——ReductionfactorforloadcapacityofCFSTwithdebonding;
K——Coefficientforconvertedslendernessratio;
K′——Correctionfactorforconvertedslendernessratio;
m——CoefficientconsideringtheinfluenceofeccentricityincalculatingtheresistanceofpreloadedCSFTmemberatultimatelimitstate;
n——NumberofchordsinCFSTtrussarchrib;
V——Ratedspeedoftransmissionpump;
Q——Volumeoffillingconcreteintube.
·7·
3Materials
3.1Steel
3.1.1ThesteeltubeusedinCFSTarchribsshouldbecarbonorlowalloyhighstrengthstructuralsteelofGradeBorabove.ThesteelqualityshallcomplywiththeprovisionsincurrentnationalstandardsGB/T700CarbonStructuralSteelsorGB/T1591HighStrengthLowAlloyStructuralSteels.
3.1.2Steeltubesmayuserolledweldedtubesorseamlesssteeltubes.Whenevertherequirementofrollingissatisfied,straightseamweldedtubesshouldbeused.
3.1.3MainmechanicalpropertiesofsteelshallbeinaccordancewiththosespecifiedinTable3.1.3.
Table3.1.3Mechanicalpropertiesofsteel
Grade
Thicknessordiameter(mm)
Designstrength(N/mm²)
Characteristicstrength
f,(N/mm²)
Tensile,compressiveandflexuralstrengthf₃
Shearstrengthfd
Q235
≤16
>16-40>40—100
190
180
170
110
105
100
235
225
215
Q345
≤16>16-40
>40-63
275/270260
160
155
150
345
325
295
Q390
≤16
>16=40
>40-63
310
295
280
180
170
160
390
370
350
3.1.4ThephysicalpropertiesofsteelspecifiedinTable3.1.4maybeused.
Table3.1.4Physicalpropertiesofsteel
Elasticmodulus
E,(N/mm²)
ShearmodulusG;(N/mm²)
Thermalexpansion
coefficienta(1/°C)
Densityps(kg/m³)
Poisson'sratio
μs
2.06×10⁵
7.90×10⁴
1.20×10-5
7.85×10³
0.30
3.2Concrete
3.2.1ThegradeofconcreteusedinCFSTarchribsshallnotbelowerthanC30,andshouldbeGradesC40-C60.
3.2.2Thecharacteristicaxialcompressivestrengthfek,designaxialcompressivestrengthfea,characteristicaxialtensilestrengthfik,designaxialtensilestrengthfaandelasticmodulusEoftheconcreteshallbeinaccordancewiththosespecifiedinTable3.2.2.TheshearmodulusG₆oftheconcretemaybetakenas40%oftheelasticmodulusE。specifiedinTable3.2.2.ThePoisson'sratioμeofconcretemaybeassumedtobe0.2.
·8·
Table3.2.2Strengthsandelasticmodulusofconcrete(N/mm²)
StrengthGrade
Axialcompressivestrength
Axialtensilestrength
Elasticmodulus
E.
Characteristicvaluefek
Designvaluefd
Characteristicvaluefik
Designvaluefua
C30
20.10
14.30
2.01
1.43
3.00×10⁴
C35
23.40
16.70
2.20
1.57
3.15×10⁴
C40
26.80
19.10
2.39
1.71
3.25×10⁴
C45
29.60
21.10
2.51
1.80
3.35×10⁴
C50
32.40
23.10
2.64
1.89
3.45×10⁴
C55
35.30
25.30
2.74
1.96
3.55×10⁴
C60
38.50
27.50
2.85
2.04
3.60×10⁴
3.3Concrete-FilledSteelTube
3.3.1Thefollowingcombinationsofsteeltubeandconcretemaybeused:
1Q235steelmatchedwithconcreteofGradeC30-C40;
2Q345steelmatchedwithconcreteofGradeC40-C60;
3Q390steelmatchedwithconcreteofGradeC60orabove.
3.3.2Thewallthicknessofsteeltubesshallnotbelessthan8mm.TheratiooftheouterdiameterDtothewallthicknesstofsteeltubesshouldbeintherangeof35×(235/月)-100×(235/f,).ThecharacteristicstrengthvalueofsteelfshallcomplywiththeprovisionsinTable3.1.3.
3.3.3ThedesignconfinementcoefficientofCFST5。shouldnotbelessthan0.60.Thesectionalsteelratiopeshouldbeintherangeof0.04-0.20.Theparametersof5oandp.shallbecalculatedbyusingthe
followingformulae:
(3.3.3-1)
(3.3.3-2)
Where,50——DesignconfinementcoefficientofCFST;
pc——SectionalsteelratioofCFST;
A,——Sectionalareaofsteeltube;
A.——Sectionalareaofconcretecore;
fs——Designtensile,compressiveandflexuralstrengthvaluesofsteel;fa——Designcompressivestrengthvalueofconcrete.
3.4OtherMaterials
3.4.1Highstrengthsteelwiresusedforsuspendersandtiesshouldbecomprisedofd5mmorφ7mmhigh-strengthhot-dipgalvanizedsteelwires.Theircharacteristicstrengthshouldnotbelessthan1670N/mm².ThematerialpropertiesshallcomplywiththeprovisionsinthecurrentnationalstandardGB/T17101Hot-DipGalvanizedSteelWiresforBridgeCables.
3.4.2Steelstrandsusedforsuspendersandtiesshouldbehigh-strengthlow-relaxationprestressinggalvanizedorothercorrosion-protectedsteelstrands.Theircharacteristicstrengthshouldnotbelessthan1860N/mm².ThematerialpropertiesshallcomplywiththeprovisionsinthecurrentnationalstandardGB/T5224SteelStrandforPrestressedConcrete.
·9·
3.4.3Anchoragedevicesforsuspenders,tiesandotherconnectionsshallincorporatehigh-qualitycarbonstructuralsteeloralloystructuralsteel.Theirmechanicalperformanceshallcomplywiththeprovisionsintherelevantnationalstandards.Theprotectivematerialsusedforsuspendersandtiesshallnotcontaincorrosiveingredients.
·10·
4BasicRequirements
4.1GeneralRequirements
4.1.1ThelimitstatedesignmethodbasedontheprobabilitytheoryisadoptedintheCode,inwhichdesigncalculationisconductedaccordingtothedesignformulaeofpartialsafetyfactors.
4.1.2CFSTarchbridgesshallbedesignedaccordingtothefollowingtwolimitstates:
1UltimateLimitState(ULS):AstatethataCFSTarchbridgeoranyofitscomponentsachievesthemaximumload-carryingcapacityorthedeformation/displacementthatfailstocarryloading.
2ServiceabilityLimitState(SLS):AstatethataCFSTarchbridgeoranyofitscomponentsachievesacertainspecifiedlimitfornormaluseordurability.
4.1.3CFSTarchbridgesshallbedesignedtofulfiltheultimatelimitstateandserviceabilitylimitstaterequirementsinpersistentsituations.
4.1.4SeismicdesignofCFSTarchbridgesshallcomplywiththeprovisionsinthecurrentprofessionalstandardsCJJ166CodeforSeismic,DesignofUrbanBridgesorJTG/TB02-01GuidelinesforSeismicDesignofHighwayBridges.
4.1.5ForconnectionsbetweensteelstructuresandsteelcomponentsofCFSTarchbridges,includingthesteeltubearchstructurepriortotheconcretecorereachingitsdesignstrengthattheconstructionstage,theirresistance,deformationcapacityandstabilityshallbedesignedandcalculatedaccordingtosteelbridgestructuredesignandinaccordancewithrelevantcurrentnationalstandards.
4.1.6DuringthedesignofCFSTarchbridges,theconstructionscheme,mainconstructionsequences,qualityrequirementsandallowableunbalancedactionsduringconstructionshallbedeterminedbasedonlocalgeology,transportationandotherconstructionconditions.Thesequencesofstructuralsystemtransformationandtheassociatedmeasuresshallbeclearlydecided.
4.1.7DuringthedesignofCFSTarchbridges,thefollowingcalculationsforeachstageofconstructionshallbecarriedout:
1Stress,deformationandstabilityofarchribcomponentsduringtransportationandassembling;
2Structuralbehaviorofsecondarystructuresassociatedwiththefabricationofarchrib,suchasribhinges,buckles,segmentaljoints,etc.;
3Stress,deformationandstabilityofarchribintheprocessofformation;
4Stress,deformationandstabilityofbridgestructureintheprocessofformation.
4.1.8Calculationforconstructionshalltakeintoaccountpotentialactualactions,includingequipmentandmaterialsforerection,constructionstaff,stackedloadsondeck,aswellaswindload,thermalloadandothertemporaryconstructionloads.Theeigenvalueofelasticstructuralstabilityduringconstructionshallnotbelessthan4.0.
4.1.9CFSTarchrib,horizontalbars,spandrelcolumnsanddeckingbeamsshallbedesignedtosatisfytherequirementsofinspection,maintenanceandrepairinservice.
4.1.10CorrosionprotectionsolutionsforsteelstructuresofCFSTarchbridgesshallbedesignedaccordingtolocalatmosphericenvironment.Theirrepair-freeperiodshallbeatleast15years.The
·11·
corrosionprotectionsystemshouldbedesignedbyconsideringtheexposureenvironmentofabridgeanditsdifferentparts.Therequirementsforgradeofsurfacerustcleaning,surfacecleanliness,surfaceroughness,etc.shallfollowwiththecurrentprofessionalstandardJT/T722SpecificationsofProtectiveCoatingforHighwayBridgeSteelStructure.
4.1.11Requirementsforwater-proofing,drainageanddurabilityofotherstructuralcomponentsofCFSTarchbridgesshallcomplywithrelevantcurrentnationalstandards.
4.1.12BeforeconstructionofCFSTarchbridges,specifictechnicalschemesforconstructionandsafetyshallbedeterminedforeachkeyconstructionprocedure.
4.1.13Theconstructionprocessoflong-spanCFSTarchbridgesshallbemonitoredandcontrolledtoensurethatthearchaxis,internalforces,tensileforcesinsuspendersandties,preloadingstresses,andsoonsatisfythedesignrequirements.
4.2Actions
4.2.1Classificationofactions,combinationofactioneffectsandcalculationforactionsinCFSTarchbridgesshallcomplywithnotonlytheprovisionsintheCode,butalsothoseinthecurrentprofessionalstandardsCJJ11CodeforDesignoftheMunicipalBridgeorJTGD60GeneralSpecificationsforDesignofHighwayBridgesandCulvertsaccordingtodifferentengineeringprojects.
4.2.2VehicularloadimpactcoefficientμoforCFSTarchribsmaybecalculatedbyusingthefollowingequation:
μo=0.05736f+0.0748(4.2.2)
Where,f——FrequencyofthefirstverticalmodeofvibrationoftheCFSTarchbridge(Hz).
4.2.3ThedeformationorsecondarystressesinCFSTarchduetothetemperaturevariationshallbedeterminedbasedonlocalairtemperature,bridgestructure,constructionaldesign,etc..Thecharacteristicvaluesofthermalexpansioncoefficientandactionmaybecalculatedinaccordancewiththefollowingprovisions:
1TheaxialthermalexpansioncoefficientaofaCFSTarchribsubjectedtouniformsectionaltemperaturedistributionmaybecalculatedbythefollowingequation:
(4.2.3-1)
Where,αs——Thermalexpansioncoefficientofsteel(1/℃),a₅=1.2×10-5/℃;
αc——Thermalexpansioncoefficientofconcrete(1/℃),αc=1.0×10-5/℃.
2ForcalculationofadditionalorconstraineddeformationofCFSTarchduetothevariationofuniformsectionaltemperature,thecalculatedclosuretemperatureTshallbetakenasthereferencetemperature,andeffectsofthehighestandlowesteffectivetemperatureactionsareconsidered.
3ThecalculatedclosuretemperatureTmaybecalculatedbythefollowingequation:
(4.2.3-2)Where,T₂₈——Averageairtemperatureduring28daysafterfillingofconcrete(℃);
D——Outerdiameterofsteeltube(m);
T₀——Additionaltemperatureincreaseconsideringtheeffectofhydrationheatofconcretecore,whichisintherangeof3.0°C-5.0°C.Thelowervalueistakenforwinterconstructionandthehigheroneforsummerconstruction.Ifthegradeofconcreteis
·12·
lowerthanC40,thecalculatedclosuretemperaturecanbereducedby1.0℃.
4Thehighestandlowesteffectivetemperaturesmayusethehighestandlowestlocalairtemperatures.
4.2.4Whencalculatingthedeformationandsecondarystres
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026贵州康体旅投发展有限公司实习生招聘2人参考考试题库及答案解析
- 2026吉林省吉林市永吉县公益性岗位人员招聘66人备考考试题库及答案解析
- 银行股份公司管理制度(3篇)
- 石嘴山年会活动策划方案(3篇)
- 学生协商活动策划方案(3篇)
- 老客引流活动策划方案(3篇)
- 公司内部pos管理制度(3篇)
- 2026北京协和医院妇科内分泌与生殖中心合同制科研助理招聘备考考试试题及答案解析
- 2026江苏苏州大学纳米科学技术学院课程助教招聘(2025-2026-2学期)考试备考题库及答案解析
- 2026年甘肃陇南宕昌县有关单位招聘公益性岗位人员25人备考考试试题及答案解析
- 《环境科学与工程导论》课件-第12章环境质量评价
- 2024-2025学年河南省南阳市油田七年级上学期期末教学质量检测数学试卷(含答案)
- 道路应急处理培训
- DB4403-T 364-2023 智能网联汽车V2x车载信息交互系统技术要求
- 2024年卫生高级职称面审答辩(呼吸内科)(副高面审)经典试题及答案
- 幼儿园流感培训知识课件
- 蕲春县国土空间总体规划(2021-2035)
- 一年级上册语文 快乐读书吧《和大人一起读》必考考点知识梳理
- 公司出口事务管理制度
- 车位转让车位协议书
- 2025年中国液冷项目投资计划书
评论
0/150
提交评论