钢管混凝土拱桥技术规范_第1页
钢管混凝土拱桥技术规范_第2页
钢管混凝土拱桥技术规范_第3页
钢管混凝土拱桥技术规范_第4页
钢管混凝土拱桥技术规范_第5页
已阅读5页,还剩89页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Foreword

FollowingtherequirementsofNoticeonPrintingtheDevelopmentandRevisionPlanofNationalEngineeringConstructionStandardsin2011(JianBiao〔2011〕No.17)issuedbytheMinistryofHousingandUrban-RuralDevelopment,thecodecompilationorganizationsdeveloptheCodebasedonintensiveinvestigationandstudy,summaryofpracticeexperiences,reviewofrelevant'prominentinternationalstandards,andextensiveconsultation.

Thecodecomprises14chaptersandsupplementarycommentaryontheprovisions.Themaintechnicalcontentsinclude:GeneralProvisions;TermsandSymbols;Materials;BasicRequirements;CalculationforUltimateLimitStatesinPersistentSituations;CaleulationforServiceabilityLimitStatesinPersistentSituations;StructureandDetailing;FabricationofSteelTubesofArchRibs;Welding;CorrosionProtectionCoating;ErectionofSteelTubeArchRibs;FillingofConcrete;ConstructionofOtherStructures;Maintenance.

Theprovisionsthatareprintedinboldtypearemandatoryprovisionsandmustbeenforcedstrictly.

TheMinistryofHousingandUrban-RuralDevelopmentsisinchargeoftheadministrationoftheCodeandtheexplanationofthemandatoryprovisions.FuzhouUniversityisresponsiblefortheexplanationofspecifictechnicalcontents.Alrelevantorganizationsarekindlyrequestedtofeedbackanyquestions,commentsandsuggestionsassociatedwiththeimplementationoftheCodebythemanagementgroupoftheCodeinCollegeofCivilEngineeringatFuzhouUniversity(Address:No.2XueyuanRoad,UniversityTown,Minhou,Fuzhou,Fujian350108,China).

ChiefDevelopmentOrganizations:

FuzhouUniversity

CSCECStraitConstructionandDevelopmentCo.,Ltd

ParticipatingDevelopmentOrganizations:

ShenzhenMunicipalDesignandResearchInstituteCo.,Ltd

SichuanProvincialTransportDepartmentHighwayPlanning,Survey,DesignandResearchInstitute

GuangxiRoadandBridgeEngineeringCorporation

ResearchInstituteofHighwayMinistryofTransport

ChangshaUniversityofScienceandTechnology

Chang'AnUniversity

WuhanUniversityofTechnology

HarbinInstituteofTechnology

WuchuanHeavyEngineeringCo.,Ltd

ChiefDraftingStaff:

ChenBaochunWuPingchunWeijiangangWuQingxiongMouTingminChenYiyanChenGuanghuiDingQingjunRuanJiashunZhangJianrenZhaXiaoxiongZhangJinquanLiuYongjianJiaoAnliang

ChiefReviewingStaff:

ZhengJielianHuangQiaoFanWenliPengYuanchengMaBiao

XuYongZhaoLinqiangCaoRuiLongYue

·1·

Contents

1GeneralProvisions (1)

2TermsandSymbols (2)

2.1Terms (2)

2.2Symbols (3)

3Materials (7)

3.1Steel (7)

3.2Concrete (7)

3.3Concrete-FilledSteelTube (8)

3.4OtherMaterials (8)

4BasicRequirements (10)

4.1GeneralRequirements (10)

4.2Actions (11)

4.3StructuralCalculation (12)

5CalculationforUltimateLimitStatesinPersistentSituations (13)

5.1GeneralRequirements (13)

5.2StrengthCalculationforArchRibs (13)

5.3StabilityofArchRib (17)

5.4SuspendersandTies (20)

6CalculationforServiceabilityLimitStatesinPersistentSituations (22)

7StructureandDetailing (23)

7.1StructureTypes (23)

7.2MainArch (23)

7.3ArchSeatsandSpandrelColumns (26)

7.4SuspendersandTies (26)

7.5DeckSystem (27)

8FabricationofSteelTubesofArchRibs (28)

8.1FabricationofSteelTubes (28)

8.2AssemblingofSteelTubesofArchRibs (28)

8.3QualityInspectionforSteelTubeArchRibs (29)

9Welding (32)

10CorrosionProtectionCoating (34)

11ErectionofSteelTubeArchRibs (36)

11.1GeneralRequirements (36)

11.2ErectionandQualityInspectionofSteelTubeArchRibs (36)

12FillingofConcrete (38)

12.1GeneralRequirements (38)

12.2FillingofConcreteintoArchTubes (39)

·2·

12.3QualityInspectionafterFillingofConcrete (39)

13ConstructionofOtherStructures (41)

13.1GeneralRequirements (41)

13.2InstallationandQualityInspectionofSuspendersandTies (41)

14Maintenance (43)

14.1GeneralRequirements (43)

14.2InspectionandAssessment (43)

14.3MaintenanceofStructures (47)

ExplanationofWordinginThisCode (50)

ListofQuotedStandards (51)

·1·

1GeneralProvisions

1.0.1TheCodeisdevelopedtosatisfytherequirementsforbridgeengineeringconstructionandtoensurethatthedesign,constructionandmaintenanceofconcrete-filledsteeltubearchbridgesfollowstherequirementsforsafety,reliability,durability,practicability,technicaladvancement,andeconomicfeasibility.

1.0.2TheCodeisapplicabletothedesign,constructionandmaintenanceofconcrete-filledsteeltubearchbridgesinmunicipalandhighwayengineering.

1.0.3Thedesign,constructionandmaintenanceofconcrete-filledsteeltubearchbridgesshallnotonlycomplywiththeprovisionsspecifiedintheCode,butalsothosespecifiedinthecurrentrelevantnationalstandards.

·2·

2TermsandSymbols

2.1Terms

2.1.1Concrete-filledsteeltube(CFST)archbridge

Abridgewhosemainload-carryingcomponent(s)is(are)concrete-filledsteeltube(s)withacircularcross-section,whichserve(s)asrib(s)foranarch.

2.1.2CFSTarchrib

Anarchrib,whosemainload-carryingelement(s)is(are)concrete-filledsteeltube(s).

2.1.3Steeltubearchrib

Anarchribofahollowsteeltubewithoutfillingofconcreteinside.

2.1.4Concreteintube(coreconcrete)Concretethatisfilledinasteeltube.

2.1.5CFSTmember

AmemberthatismadeofCFST,inwhichthesteeltubeandtheconcretecoreactcompositelytoresistloads.

2.1.6Singletubearchrib

AnarchribthatisformedbyasingleCFSTmemberwithacircularsection.

2.1.7Dumbbell-shapedarchrib

AnarchribthatisformedbytwotopandbottomCFSTmemberswithcircularsectionconnectedbytwosteelwebplates.

2.1.8Trussarchrib

AnarchribthatisformedbytopandbottomCFSTchordsconnectedbywebmemberstoformtrusses.

2.1.9LacedCFSTcolumn

AlacedcolumnthatisformedbymultipleCFSTmembersconnectedtransverselybyhollowsteeltubes.

2.1.10Rigid-frametiedarch

Anarchstructurewhoseribisrigidlyconnectedtopiersandthehorizontalthrustispartiallybalancedbypre-stressedties.

2.1.11Rigid-frametiedthrougharch

Abridgestructurewhosedecksystemissuspendedbelowtherigid-frametiedarch.

2.1.12Rigid-frametiedhalf-througharch

Amulti-spanbridgestructurewhosedecksystematthemainspanispartiallysuspendedbelowtherigid-frametiedarch,whileitsdecksystemsattwosidespansaresupportedabovetwocantileverhalfarches.Thetiesareanchoredoneachendofthesidespans.Itisalsoknownasaflying-birdarch.

2.1.13Confinement(hooping)coefficient

Acoefficientaccountsfortheconfinementeffectofthesteeltubeontheconcretecore.

·3·

2.1.14InitialstressorPreloadingofsteeltube

TheinitialaxialstressinasteeltubecausedbyloadsduetosequentialconstructionproceduresbeforecompositeactionisfullyformedintheCFSTmembers,itisalsocalledinitialstressorpreloadingofCFST.

2.1.15Initialstressingratioorpreloadingratio

Theratioofpreloadingstresstotheyieldstressofthesteeltube.

2.1.16Computationalclosuretemperature

TheaveragetemperatureinthecrosssectionatthemomentofzerothermalstresswhichisconvertedfromthestressesintheCFSTarchribwhentheconcretecorereachesitsdesignstrength.

2.1.17Intersectionjoint

IntersectionlineweldingjointconnectingthemainCFSTtube(chord)withthebranchtube(webtruss).

2.1.18Debonding

Thephenomenonofseparationofthesteeltubefromtheconcretecorethatareattributedtofactorsotherthanqualityissuesincludingthermalgradientandshrinkageoftheconcretecore.

2.1.19Debonding(angle)rate

Thecentralangle(ratio)correspondingtothedebondingregioninthecrosssectionofCFSTmembers.

2.2Symbols

2.2.1Actions(loadsandresistances):

N——Designvalueofaxialforce;

N₁,N₂——Factoredaxialforcesonthetwotubesinadumbbell-shapedarchrib;M——Designvalueofsectionalmoment;

M₁,M₂——Factoredsectionalmomentsonthetwotubesinadumbbell-shapedarchrib;N——Designvalueofaxialcompressiveforcecombination;

S——Designvalueofcombinationofactions;

R——Designvalueofresistanceofacomponent;

R(·)——Loadresistancefunctionofacomponent;

V₁——Designvalueofaxialforceofwebtruss.

2.2.2Materialproperties:

(EA)s——DesigncompressivestiffnessofcompositesectionofCFSTarchrib;(EI)s——DesignflexuralstiffnessofcompositesectionofCFSTarchrib;

(EA)sc1———DesigncompressivestiffnessofgrosssectionofCFSTarchrib;

(EI)sc1——DesignflexuralstiffnessofgrosssectionofCFSTarchrib;

(EA)sc2——GrosscompositecompressivestiffnessofsingletubeCFSTmember;

(EI)sc2——GrosscompositeflexuralstiffnessofsingletubeCFSTmember;

E.——Elasticmodulusofconcrete;

E₅——Elasticmodulusofsteel;

fd——Designcompressivestrengthvalueofconcrete;

fck—Characteristiccompressivestrengthvalueofconcrete;

·4·

fa——Designstrengthvalueofmaterials;

fva——Designshearstrengthvalueofsteel;

fs——Designtensile,compressiveandbendingstrengthvaluesofsteel;

fa——Designtensilestrengthvalueofconcrete;

fik——Characteristictensilestrengthvalueofconcrete;

fy——Characteristicstrengthvalueofsteel;

G.——Shearmodulusofconcrete;

G₅——Shearmodulusofsteel;

N₀——DesignaxialcompressivestrengthofsingletubeCFSTsection;

Nó——DesignaxialcompressivestrengthofsingletubeCFSTsectionconsideringdebonding;

N——DesignaxialcompressivestrengthofeachCFSTsectioninthearchrib;

No——Designaxialcompressivestrengthoftheithtrussmemberintrussarchrib;

No₁——DesigncompressivestrengthofeccentricallyloadedsingletubeCFSTmember;

No₂——DesignstabilityresistanceofeccentricallyloadedsingletubeCFSTmember;

ND——Designcompressivestrengthofdumbbell-shapedorlacedCFSTmember;

Np——Designcompressivestrengthofeccentrically-loadeddumbbell-shapedorlacedCFSTmember;

ND₂——Designstabilityresistanceofeccentrically-loadeddumbbell-shapedorlacedCFSTmember;

N——DesigncompressivestrengthofconnectingsteelwebplatesthatshareloadswithmainCFSTchords;

fpk———Characteristictensilestrengthofsuspendersorties;

α——LongitudinalthermalexpansioncoefficientofCFSTarchribsubjecttouniformtemperaturedistributiononitssection;

αs——Thermalexpansioncoefficientofsteel;

αc——Thermalexpansioncoefficientofconcrete;

Ps——Densityofsteel;

μc——Poisson'sratioofconcrete;

μs——Poisson'sratioofsteel;

σ——Stressinsuspendersorties;

0o——Preloadingstressofsteeltube.

2.2.3Geometricparameters:

aa——Designgeometricparameter;

A——ConvertedareaofCFSTchordsection;

A₆——Totalsectionalareaofhorizontalwebtrussesbetweenadjacentjoints;

A.——Cross-sectionalareaofconcretecore;

Aa——Totalsectionalareaofdiagonalwebtrussesbetweenadjacentjoints;

A——Cross-sectionalareaofconnectingsteelplate;

A,——Cross-sectionalareaofsteeltube;

A——SectionalareaofCFSTcompositemember;

As——Cross-sectionalareaofsteeltubeinCFSTarchrib;

·5·

Ac——Cross-sectionalareaofconcretecoreinCFSTarchrib;

a——DistancefromthecenterofindividualCFSTmembertothevirtualaxisy-yinlacedCFSTcolumn;

b——DistancefromthecenterofindividualCFSTmembertothevirtualaxisx-xinlacedCFSTcolumn;

D——Outerdiameterofsteeltube;

d——Diameterofsuspendersorties;

eo——Loadeccentricity;

f——Riseofarch;

f₁——Riseofarchabovedecksystem;

h₁——Centraldistanceoftwochordsinbendingplaneofdumbbell-shapedorlacedCFSTcolumn;

h₂——Depthofwebplateofdumbbell-shapedCFSTsection;

H——Depthofthecrosssectionofarchrib;r——Calculatedradiusofcrosssection;

i——Cross-sectionalradiusofgyration;

I.——Secondmomentofareaofconcretecoresection;

I₈——Secondmomentofareaofsteeltubesection;

Ic——SecondmomentofareaofcompositesectionofCFST;Is₁——Secondmomentofareaofsteelsection;

Ic——Secondmomentofareaofconcretesection;l——Lengthofcomponent;

L——Calculatedspanofarchbridge;

lo——Calculatedlengthofcomponent;Lo——Clearspanofarchrib;

L₀——Equivalentcalculatedlengthofarchrib;La——Lengthofsuspender;

L₂——Straightlengthofarchribsegment;

lax——CalculatedlengthofacomponentrelativetoaxisX;

loy——CalculatedlengthofacomponentrelativetoaxisY;

l₁——DistancebetweenadjacentjointsoflacedCFSTcolumn;

l₂——Longitudinaldistancebetweenstiffenersalongthewebplatesofdumbbell-shapedarchrib;re——Radiusofcrosssectionofconcretecore;

S——Lengthofarchaxis;

t——Thicknessofsteeltubeorinitialsettingtimeofconcrete;T——Calculatedclosuretemperature;

T₀——Additionaltemperatureincrease;

T₂8——Averageairtemperatureduring28daysafterfillingofconcrete;Eb——Boundeccentricityratio;

0——Anglebetweentwoadjacentarchribsegments;△——Gapbetweenbranchtubesinajoint.

·6·

2.2.4Coefficientsincalculationandothers:

β——Preloadingratioofsteeltube;

50,5——DesignandcharacteristicconfinementcoefficientsofCFSTmember,respectively;p——Loadeccentricityratio;

pc——SteelratioofCFSTsection;

x——Calculationcoefficient;

μ——Slendernesscoefficient;

μo——ImpactcoefficientofvehicularloadforCFSTarchrib;

γo——Importancecoefficientofbridgestructure;

η1——SectionalflexuralstiffnessratioofindividualCFSTchordtothewholeCFSTmember;

φ——Stabilityfactor;

φe——Reductionfactorofeccentricityratio;

λ——NominalslendernessratioofCFSTmember;

λn——Relativeslendernessratio;

λ*——ConvertedslendernessratiooflacedCFSTcolumn;

λ₁——NominalslendernessratioofindividualchordoflacedCFSTcolumn;

λ,λ,——NominalslendernessratiooflacedCFSTcolumnrelativetoX-axisandY-axis,respectively;

a——CoefficientconsideringtheeffectsofslendernessratiowhencalculatingtheresistanceofpreloadedCFSTmembersatultimatelimitstate;

fo——FrequencyofthefirstverticalmodeofvibrationofaCFSTarchbridge;

k——ReductionfactorforcreepoftheloadcapacityofCFSTmember;

K,——Influencefactorforpreloadingratio;

k₁——Loadfactor;

k₂——Trafficlanecoefficient;

k₃—Conversioncoefficientofdesignaxialcompressivestrength;

K——ReductionfactorforloadcapacityofCFSTwithdebonding;

K——Coefficientforconvertedslendernessratio;

K′——Correctionfactorforconvertedslendernessratio;

m——CoefficientconsideringtheinfluenceofeccentricityincalculatingtheresistanceofpreloadedCSFTmemberatultimatelimitstate;

n——NumberofchordsinCFSTtrussarchrib;

V——Ratedspeedoftransmissionpump;

Q——Volumeoffillingconcreteintube.

·7·

3Materials

3.1Steel

3.1.1ThesteeltubeusedinCFSTarchribsshouldbecarbonorlowalloyhighstrengthstructuralsteelofGradeBorabove.ThesteelqualityshallcomplywiththeprovisionsincurrentnationalstandardsGB/T700CarbonStructuralSteelsorGB/T1591HighStrengthLowAlloyStructuralSteels.

3.1.2Steeltubesmayuserolledweldedtubesorseamlesssteeltubes.Whenevertherequirementofrollingissatisfied,straightseamweldedtubesshouldbeused.

3.1.3MainmechanicalpropertiesofsteelshallbeinaccordancewiththosespecifiedinTable3.1.3.

Table3.1.3Mechanicalpropertiesofsteel

Grade

Thicknessordiameter(mm)

Designstrength(N/mm²)

Characteristicstrength

f,(N/mm²)

Tensile,compressiveandflexuralstrengthf₃

Shearstrengthfd

Q235

≤16

>16-40>40—100

190

180

170

110

105

100

235

225

215

Q345

≤16>16-40

>40-63

275/270260

160

155

150

345

325

295

Q390

≤16

>16=40

>40-63

310

295

280

180

170

160

390

370

350

3.1.4ThephysicalpropertiesofsteelspecifiedinTable3.1.4maybeused.

Table3.1.4Physicalpropertiesofsteel

Elasticmodulus

E,(N/mm²)

ShearmodulusG;(N/mm²)

Thermalexpansion

coefficienta(1/°C)

Densityps(kg/m³)

Poisson'sratio

μs

2.06×10⁵

7.90×10⁴

1.20×10-5

7.85×10³

0.30

3.2Concrete

3.2.1ThegradeofconcreteusedinCFSTarchribsshallnotbelowerthanC30,andshouldbeGradesC40-C60.

3.2.2Thecharacteristicaxialcompressivestrengthfek,designaxialcompressivestrengthfea,characteristicaxialtensilestrengthfik,designaxialtensilestrengthfaandelasticmodulusEoftheconcreteshallbeinaccordancewiththosespecifiedinTable3.2.2.TheshearmodulusG₆oftheconcretemaybetakenas40%oftheelasticmodulusE。specifiedinTable3.2.2.ThePoisson'sratioμeofconcretemaybeassumedtobe0.2.

·8·

Table3.2.2Strengthsandelasticmodulusofconcrete(N/mm²)

StrengthGrade

Axialcompressivestrength

Axialtensilestrength

Elasticmodulus

E.

Characteristicvaluefek

Designvaluefd

Characteristicvaluefik

Designvaluefua

C30

20.10

14.30

2.01

1.43

3.00×10⁴

C35

23.40

16.70

2.20

1.57

3.15×10⁴

C40

26.80

19.10

2.39

1.71

3.25×10⁴

C45

29.60

21.10

2.51

1.80

3.35×10⁴

C50

32.40

23.10

2.64

1.89

3.45×10⁴

C55

35.30

25.30

2.74

1.96

3.55×10⁴

C60

38.50

27.50

2.85

2.04

3.60×10⁴

3.3Concrete-FilledSteelTube

3.3.1Thefollowingcombinationsofsteeltubeandconcretemaybeused:

1Q235steelmatchedwithconcreteofGradeC30-C40;

2Q345steelmatchedwithconcreteofGradeC40-C60;

3Q390steelmatchedwithconcreteofGradeC60orabove.

3.3.2Thewallthicknessofsteeltubesshallnotbelessthan8mm.TheratiooftheouterdiameterDtothewallthicknesstofsteeltubesshouldbeintherangeof35×(235/月)-100×(235/f,).ThecharacteristicstrengthvalueofsteelfshallcomplywiththeprovisionsinTable3.1.3.

3.3.3ThedesignconfinementcoefficientofCFST5。shouldnotbelessthan0.60.Thesectionalsteelratiopeshouldbeintherangeof0.04-0.20.Theparametersof5oandp.shallbecalculatedbyusingthe

followingformulae:

(3.3.3-1)

(3.3.3-2)

Where,50——DesignconfinementcoefficientofCFST;

pc——SectionalsteelratioofCFST;

A,——Sectionalareaofsteeltube;

A.——Sectionalareaofconcretecore;

fs——Designtensile,compressiveandflexuralstrengthvaluesofsteel;fa——Designcompressivestrengthvalueofconcrete.

3.4OtherMaterials

3.4.1Highstrengthsteelwiresusedforsuspendersandtiesshouldbecomprisedofd5mmorφ7mmhigh-strengthhot-dipgalvanizedsteelwires.Theircharacteristicstrengthshouldnotbelessthan1670N/mm².ThematerialpropertiesshallcomplywiththeprovisionsinthecurrentnationalstandardGB/T17101Hot-DipGalvanizedSteelWiresforBridgeCables.

3.4.2Steelstrandsusedforsuspendersandtiesshouldbehigh-strengthlow-relaxationprestressinggalvanizedorothercorrosion-protectedsteelstrands.Theircharacteristicstrengthshouldnotbelessthan1860N/mm².ThematerialpropertiesshallcomplywiththeprovisionsinthecurrentnationalstandardGB/T5224SteelStrandforPrestressedConcrete.

·9·

3.4.3Anchoragedevicesforsuspenders,tiesandotherconnectionsshallincorporatehigh-qualitycarbonstructuralsteeloralloystructuralsteel.Theirmechanicalperformanceshallcomplywiththeprovisionsintherelevantnationalstandards.Theprotectivematerialsusedforsuspendersandtiesshallnotcontaincorrosiveingredients.

·10·

4BasicRequirements

4.1GeneralRequirements

4.1.1ThelimitstatedesignmethodbasedontheprobabilitytheoryisadoptedintheCode,inwhichdesigncalculationisconductedaccordingtothedesignformulaeofpartialsafetyfactors.

4.1.2CFSTarchbridgesshallbedesignedaccordingtothefollowingtwolimitstates:

1UltimateLimitState(ULS):AstatethataCFSTarchbridgeoranyofitscomponentsachievesthemaximumload-carryingcapacityorthedeformation/displacementthatfailstocarryloading.

2ServiceabilityLimitState(SLS):AstatethataCFSTarchbridgeoranyofitscomponentsachievesacertainspecifiedlimitfornormaluseordurability.

4.1.3CFSTarchbridgesshallbedesignedtofulfiltheultimatelimitstateandserviceabilitylimitstaterequirementsinpersistentsituations.

4.1.4SeismicdesignofCFSTarchbridgesshallcomplywiththeprovisionsinthecurrentprofessionalstandardsCJJ166CodeforSeismic,DesignofUrbanBridgesorJTG/TB02-01GuidelinesforSeismicDesignofHighwayBridges.

4.1.5ForconnectionsbetweensteelstructuresandsteelcomponentsofCFSTarchbridges,includingthesteeltubearchstructurepriortotheconcretecorereachingitsdesignstrengthattheconstructionstage,theirresistance,deformationcapacityandstabilityshallbedesignedandcalculatedaccordingtosteelbridgestructuredesignandinaccordancewithrelevantcurrentnationalstandards.

4.1.6DuringthedesignofCFSTarchbridges,theconstructionscheme,mainconstructionsequences,qualityrequirementsandallowableunbalancedactionsduringconstructionshallbedeterminedbasedonlocalgeology,transportationandotherconstructionconditions.Thesequencesofstructuralsystemtransformationandtheassociatedmeasuresshallbeclearlydecided.

4.1.7DuringthedesignofCFSTarchbridges,thefollowingcalculationsforeachstageofconstructionshallbecarriedout:

1Stress,deformationandstabilityofarchribcomponentsduringtransportationandassembling;

2Structuralbehaviorofsecondarystructuresassociatedwiththefabricationofarchrib,suchasribhinges,buckles,segmentaljoints,etc.;

3Stress,deformationandstabilityofarchribintheprocessofformation;

4Stress,deformationandstabilityofbridgestructureintheprocessofformation.

4.1.8Calculationforconstructionshalltakeintoaccountpotentialactualactions,includingequipmentandmaterialsforerection,constructionstaff,stackedloadsondeck,aswellaswindload,thermalloadandothertemporaryconstructionloads.Theeigenvalueofelasticstructuralstabilityduringconstructionshallnotbelessthan4.0.

4.1.9CFSTarchrib,horizontalbars,spandrelcolumnsanddeckingbeamsshallbedesignedtosatisfytherequirementsofinspection,maintenanceandrepairinservice.

4.1.10CorrosionprotectionsolutionsforsteelstructuresofCFSTarchbridgesshallbedesignedaccordingtolocalatmosphericenvironment.Theirrepair-freeperiodshallbeatleast15years.The

·11·

corrosionprotectionsystemshouldbedesignedbyconsideringtheexposureenvironmentofabridgeanditsdifferentparts.Therequirementsforgradeofsurfacerustcleaning,surfacecleanliness,surfaceroughness,etc.shallfollowwiththecurrentprofessionalstandardJT/T722SpecificationsofProtectiveCoatingforHighwayBridgeSteelStructure.

4.1.11Requirementsforwater-proofing,drainageanddurabilityofotherstructuralcomponentsofCFSTarchbridgesshallcomplywithrelevantcurrentnationalstandards.

4.1.12BeforeconstructionofCFSTarchbridges,specifictechnicalschemesforconstructionandsafetyshallbedeterminedforeachkeyconstructionprocedure.

4.1.13Theconstructionprocessoflong-spanCFSTarchbridgesshallbemonitoredandcontrolledtoensurethatthearchaxis,internalforces,tensileforcesinsuspendersandties,preloadingstresses,andsoonsatisfythedesignrequirements.

4.2Actions

4.2.1Classificationofactions,combinationofactioneffectsandcalculationforactionsinCFSTarchbridgesshallcomplywithnotonlytheprovisionsintheCode,butalsothoseinthecurrentprofessionalstandardsCJJ11CodeforDesignoftheMunicipalBridgeorJTGD60GeneralSpecificationsforDesignofHighwayBridgesandCulvertsaccordingtodifferentengineeringprojects.

4.2.2VehicularloadimpactcoefficientμoforCFSTarchribsmaybecalculatedbyusingthefollowingequation:

μo=0.05736f+0.0748(4.2.2)

Where,f——FrequencyofthefirstverticalmodeofvibrationoftheCFSTarchbridge(Hz).

4.2.3ThedeformationorsecondarystressesinCFSTarchduetothetemperaturevariationshallbedeterminedbasedonlocalairtemperature,bridgestructure,constructionaldesign,etc..Thecharacteristicvaluesofthermalexpansioncoefficientandactionmaybecalculatedinaccordancewiththefollowingprovisions:

1TheaxialthermalexpansioncoefficientaofaCFSTarchribsubjectedtouniformsectionaltemperaturedistributionmaybecalculatedbythefollowingequation:

(4.2.3-1)

Where,αs——Thermalexpansioncoefficientofsteel(1/℃),a₅=1.2×10-5/℃;

αc——Thermalexpansioncoefficientofconcrete(1/℃),αc=1.0×10-5/℃.

2ForcalculationofadditionalorconstraineddeformationofCFSTarchduetothevariationofuniformsectionaltemperature,thecalculatedclosuretemperatureTshallbetakenasthereferencetemperature,andeffectsofthehighestandlowesteffectivetemperatureactionsareconsidered.

3ThecalculatedclosuretemperatureTmaybecalculatedbythefollowingequation:

(4.2.3-2)Where,T₂₈——Averageairtemperatureduring28daysafterfillingofconcrete(℃);

D——Outerdiameterofsteeltube(m);

T₀——Additionaltemperatureincreaseconsideringtheeffectofhydrationheatofconcretecore,whichisintherangeof3.0°C-5.0°C.Thelowervalueistakenforwinterconstructionandthehigheroneforsummerconstruction.Ifthegradeofconcreteis

·12·

lowerthanC40,thecalculatedclosuretemperaturecanbereducedby1.0℃.

4Thehighestandlowesteffectivetemperaturesmayusethehighestandlowestlocalairtemperatures.

4.2.4Whencalculatingthedeformationandsecondarystres

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论