版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽合肥寿春中学高二数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的离心率为,则实数()A. B.C. D.2.已知命题,,则()A., B.,C., D.,3.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.4.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.255.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.16.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为7.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.48.如图,在四棱锥中,底面ABCD是平行四边形,已知,,,,则()A. B.C. D.9.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.10.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或11.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列12.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切二、填空题:本题共4小题,每小题5分,共20分。13.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x()为二次函数的关系(如图),则每辆客车营运年数为________时,营运的年平均利润最大14.“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.15.已知点,点是直线上的动点,则的最小值是_____________16.已知函数,若有两个零点,则的范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.18.(12分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?19.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由20.(12分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.21.(12分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.22.(10分)已知关于的不等式的解集为.(1)求的值;(2)若,求的最小值,并求此时的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C2、C【解析】利用全称量词命题的否定可得出结论.【详解】命题为全称量词命题,该命题的否定为,.故选:C.3、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.4、A【解析】由题意可得焦点在轴上,由,可得k的值.【详解】∵椭圆的一个焦点是,∴,∴,故选:A5、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C6、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.7、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.8、A【解析】利用空间向量加法法则直接求解【详解】连接BD,如图,则故选:A9、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.10、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C11、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B12、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】首先根据题意得到二次函数的解析式为,再利用基本不等式求解的最大值即可.【详解】根据题意得到:抛物线的顶点为,过点,开口向下,设二次函数的解析式为,所以,解得,即,则营运的年平均利润,当且仅当,即时取等号故答案为:5.14、##【解析】计算出、两位同学各随机抽出一本书的结果种数,以及、两位同学抽到同一本书的结果种数,利用古典概型的概率公式可求得所求事件的概率.【详解】、两位同学抽到的结果都有种,由分步乘法计数原理可知,、两位同学各随机抽出一本书,共有种结果,而、两位同学抽到同一本书的结果有种,故所求概率为.故答案为:.15、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.16、【解析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.18、(1)答案见解析;(2)应选择.【解析】(1)由每台设备需更换零件个数的分布列求出的所有可能值,并求出对应的概率即可得解.(2)分别求出和时购买零件所需费用的期望,比较大小即可作答.【小问1详解】的可能取值为10,11,12,13,14,,,,,,则的分布列为:10111213140.090.30.370.20.04【小问2详解】记为当时购买零件所需费用,,,,,元,记为当时购买零件所需费用,,,,元,显然,所以应选择.19、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.20、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据存在性和任意性的定义,结合导数的性质、(1)的结论、构造函数法分类讨论进行求解即可.【小问1详解】,,①当时,恒成立,在上单调递增.②当时,恒成立,在上单调递减,③当吋,,在单调递减,单调递增.综上所述,当吋,在上单调递增;当时,在上单调递减,当时,在单调递减,单调递增.【小问2详解】由题意可知:在单调递减,单调递增由(1)可知:①当时,在单调递增,则恒成立②当时,在单调递减,则应(舍)③当时,,则应有令,则,且在单调递增,单调递减,又恒成立,则无解综上,.【点睛】关键点睛:运用构造函数法,结合存在性、任意性的定义进行求解是解题的关键.21、(1);(2)【解析】(1)根据题意设圆心,利用两点坐标公式求距离公式表示出,解出,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得,利用直线的两点式方程即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山东政法学院公开招聘工作人员29人(长期招聘岗位)考试备考题库及答案解析
- 2026中国国际航空股份有限公司广东分公司休息室就业见习岗招聘2人笔试备考试题及答案解析
- 2026能建绿氢(石家庄)新能源有限公司招聘6人笔试模拟试题及答案解析
- 2026山东能源集团营销贸易有限公司所属企业市场化招聘15人考试备考试题及答案解析
- 2026江苏南京邮电大学招聘(人事代理)4人(第二批)考试备考试题及答案解析
- 2026年医疗护理职业防护培训
- 2026年纺织厂机械操作安全守则
- 2026浙江温州市乐清市龙西乡卫生院招聘2人笔试备考试题及答案解析
- 2026上半年贵州事业单位联考贵州中医药大学第一附属医院招聘48人笔试备考题库及答案解析
- 2026年工程地质勘察中实验室分析技术
- 经典名著《红楼梦》阅读任务单
- 古田会议学习课件
- 高寒地区建筑工程冬季施工技术规范研究
- 电流保护原理课件
- DBJT15-212-2021 智慧排水建设技术规范
- 民俗学课件万建中
- 能源与动力工程专业培养目标合理性评价分析报告
- 公司员工活动室管理制度
- 2025年水晶手链市场需求分析
- CJ/T 3066-1997内磁水处理器
- 院内急重症快速反应小组
评论
0/150
提交评论