版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省安陆市第一中学2026届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.终边在y轴上的角的集合不能表示成A. B.C. D.2.若函数在上单调递增,则实数a的取值范围是()A. B.C. D.3.我们知道,函数的图象关于原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.据此,我们可以得到函数图象的对称中心为()A. B.C. D.4.已知定义域为的函数满足,且,若,则()A. B.C. D.5.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.6.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,7.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. B.C. D.8.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.9.已知实数,,且,则的最小值为()A. B.C. D.10.若,且,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.12.定义域为R,值域为-∞,113.若命题“”为真命题,则的取值范围是______14.已知是偶函数,则实数a的值为___________.15.若函数在上单调递减,则实数a的取值范围为___________.16.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.(可能用到的不等关系参考:若,且,则有)18.已知函数为定义在R上的奇函数(1)求实数m,n的值;(2)解关于x的不等式19.已知.(1)化简,并求的值;(2)若,求的值20.已知函数(1)写出函数单调递减区间和其图象的对称轴方程;(2)用五点法作图,填表并作出在图象.xy21.设函数.(1)求关于的不等式的解集;(2)若是偶函数,且,,,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.2、A【解析】将写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出的取值范围.【详解】因为,所以,当在上单调递增时,,所以,当在上单调递增时,,所以,且,所以,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.3、A【解析】依题意设函数图象的对称中心为,则为奇函数,再根据奇函数的性质得到方程组,解得即可;【详解】解:依题意设函数图象的对称中心为,由此可得为奇函数,由奇函数的性质可得,解得,则函数图象的对称中心为;故选:A4、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A5、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题6、D【解析】直接利用集合运算法则得出结果【详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性7、B【解析】因为线段的垂直平分线上的点到点,的距离相等,所以即:,化简得:故选8、C【解析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.9、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.10、D【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.12、fx【解析】利用基本初等函数的性质可知满足要求的函数可以是fx=1-a【详解】因为fx=2x的定义域为所以fx=-2x的定义域为则fx=1-2x的定义域为所以定义域为R,值域为-∞,1的一个减函数是故答案为:fx13、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:14、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:15、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:16、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2).【解析】(1)确定函数的对称轴,从而可得函数的单调性,利用的定义域和值域均是,建立方程,即可求实数的值;(2)由函数的单调性得出在单调递减,在单调递增,从而求出在上的最大值和最小值,进而求出实数的取值范围.【小问1详解】易知的对称轴为直线,故在上为减函数,∴在上单调递减,即,,代入解得或(舍去).故实数的值为2.【小问2详解】∵在是减函数,∴.∴在上单调递减,在上单调递增,又函数的对称轴为直线,∴,,又,∴.∵对任意的,总有,∴,即,解得,又,∴,即实数的取值范围为.18、(1)(2)答案详见解析【解析】(1)利用以及求得的值.(2)利用函数的奇偶性、单调性化简不等式,对进行分类讨论,由此求得不等式的解集.【小问1详解】由于是定义在R上的奇函数,所以,所以,由于是奇函数,所以,所以,即,所以.【小问2详解】由(1)得,任取,,由于,所以,,所以在上递增.不等式,即,,,,,,①.当时,①即,不等式①的解集为空集.当时,不等式①的解集为.当时,不等式①的解集为.19、(1),(2)【解析】(1)利用三角函数诱导公式将化简,将代入求值即可;(2)利用将变形为,继而变形为,代入求值即可.小问1详解】则【小问2详解】由(1)知,则20、(1)递减区间,对称轴方程:;(2)见解析【解析】(1)由正弦型函数的单调性与对称性即可求得的单调区间与对称轴;(2)根据五点作图法规则补充表格,然后在所给坐标中描出所取五点,以光滑曲线连接即可.【详解】(1)令,解得,令,解得,所以函数的递减区间为,对称轴方程:;(2)0xy131-11【点睛】本题考查正弦型函数的单调性与对称性,五点法作正(余)弦型函数的图像,属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉安武功山旅游发展集团有限公司2026年面向社会公开招聘30名安保人员的参考题库必考题
- 巴中市总工会关于招聘工会社会工作者的巴中市总工会(5人)备考题库附答案
- 成都信息工程大学2026年上半年考核招聘事业编制工作人员(86人)备考题库附答案
- 揭阳市2025年度市直单位公开遴选公务员23人考试备考题库必考题
- 福建省泉州市石狮第八中学2026年春季招聘教师参考题库附答案
- 南充市审计局2025年公开遴选公务员(3人)考试备考题库必考题
- 2026年河北承德市承德县公开招聘消防设施操作员8名备考题库必考题
- 2026湖北省定向山东大学选调生招录考试备考题库必考题
- 广东揭阳市2025下半年至2026年上半年引进基层医疗卫生急需紧缺人才招聘350人考试备考题库附答案
- 2025年西林县事业单位考试真题
- 重庆市2026年高一(上)期末联合检测(康德卷)化学+答案
- 2026年湖南郴州市百福控股集团有限公司招聘9人备考考试题库及答案解析
- 绿电直连政策及新能源就近消纳项目电价机制分析
- 【四年级】【数学】【秋季上】期末家长会:数海引航爱伴成长【课件】
- 办公楼物业服务的品质提升策略
- 养殖场土地租赁合同
- JBT 8200-2024 煤矿防爆特殊型电源装置用铅酸蓄电池(正式版)
- (正式版)SHT 3078-2024 立式圆筒形料仓工程设计规范
- 计算机就业能力展示
- 设备维修团队的协作与沟通
- 华为三支柱运作之HRBP实践分享概要课件
评论
0/150
提交评论