版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省施甸县第一中学2026届数学高二上期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象如图所示,则其导函数的图象可能是()A. B.C. D.2.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-13.某城市2017年的空气质量状况如下表所示:污染指数3060100110130140概率其中污染指数时,空气质量为优;时,空气质量为良;时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为()A. B.C. D.4.设函数,若的整数有且仅有两个,则的取值范围是()A. B.C. D.5.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△的顶点,,且,则△的欧拉线的方程为()A. B.C. D.7.已知数列为等差数列,若,则()A.1 B.2C.3 D.48.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.9.已知点,则直线的倾斜角为()A. B.C. D.10.已知点P是圆上一点,则点P到直线的距离的最大值为()A.2 B.C. D.11.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.512.已知抛物线,则它的焦点坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“任意,”为真命题,则实数a的取值范围是______.14.已知椭圆的右顶点为P,右焦点F与抛物线的焦点重合,的顶点与的中心O重合.若与相交于点A,B,且四边形为菱形,则的离心率为___________.15.如图,已知椭圆C1和双曲线C2交于P1、P2、P3、P4四个点,F1和F2分别是C1的左右焦点,也是C2的左右焦点,并且六边形是正六边形.若椭圆C1的方程为,则双曲线方程为______.16.曲线围成的图形的面积是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,18.(12分)在直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知直线与曲线C相交于A,B两点,求.19.(12分)设数列的前项和为,,且满足,.(1)求数列的通项公式;(2)证明:对一切正整数,有.20.(12分)“中山桥”是位于兰州市中心,横跨黄河之上的一座百年老桥,如图①,桥上有五个拱形桥架紧密相连,每个桥架的内部有一个水平横梁和八个与横梁垂直的立柱,气势宏伟,素有“天下黄河第一桥”之称.如图②,一个拱形桥架可以近似看作是由等腰梯形和其上方的抛物线(部分)组成,建立如图所示的平面直角坐标系,已知,,,,立柱.(1)求立柱及横梁的长;(2)求抛物线的方程和桥梁的拱高.21.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)22.(10分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据原函数图象判断出函数单调性,由此判断导函数的图象.【详解】原函数在上从左向右有增、减、增,个单调区间;在上递减.所以导函数在上从左向右应为:正、负、正;在上应为负.所以A选项符合.故选:A2、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.3、A【解析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是,由互斥事件的和的概率公式知,空气质量为良的概率为,所以该城市2017年空气质量达到良或优的概率,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.4、D【解析】等价于,令,,利用导数研究函数的单调性,作出的简图,数形结合只需满足即可.【详解】,即,又,则.令,,,当时,,时,,时,,在单调递减,在单调递增,且,且,,作出函数图象如图所示,若的整数有且仅有两个,即只需满足,即,解得:故选:D5、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法6、D【解析】由题设条件求出垂直平分线的方程,且△的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得,且中点为,∴垂直平分线的斜率,故垂直平分线方程为,∵,则△的外心、重心、垂心都在垂直平分线上,∴△的欧拉线的方程为.故选:D7、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D8、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.9、A【解析】由两点坐标,求出直线的斜率,利用,结合倾斜角的范围即可求解.【详解】设直线AB的倾斜角为,因为,所以直线AB的斜率,即,因为,所以.故选:A10、C【解析】求出圆心到直线的距离,由这个距离加上半径即得【详解】由圆,可得圆心坐标,半径,则圆心C到直线的距离为,所以点P到直线l的距离的最大值为.故选:C11、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.12、D【解析】将抛物线方程化标准形式后得到焦准距,可得结果.【详解】由得,所以,所以,所以抛物线的焦点坐标为.故选:D.【点睛】关键点点睛:将抛物线方程化为标准形式是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分离常数,将问题转化求函数最值问题.【详解】任意,恒成立恒成立,故只需,记,,易知,所以.故答案为:14、【解析】设抛物线的方程为得到,把代入椭圆的方程化简即得解.【详解】设抛物线的方程为.由题得,代入椭圆的方程得,所以,所以,所以因为,所以.故答案为:【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(根据已知求出代入离心率的公式即得解);(2)方程法(直接由已知得到关于离心率的方程解方程即得解).要根据已知条件灵活选择方法求解.15、【解析】先根据椭圆的方程求得焦点坐标,然后根据为正六边形求得点的坐标,即点在双曲线上,然后解出方程即可【详解】设双曲线的方程为:根据椭圆的方程可得:又为正六边形,则点的坐标为:则点在双曲线上,可得:又解得:故答案为:16、【解析】当,时,已知方程是,即.它对应的曲线是第一象限内半圆弧(包括端点),它的圆心为,半径为.同理,当,;,;,时对应的曲线都是半圆弧(如图).它所围成的面积是.故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)80件/小时【解析】(1)先利用等差数列的通项公式和频率分布直方图各矩形的面积之和为1求出各组频率,再利用频率分布直方图求中位数;(2)先求出、,利用最小二乘法求出回归直线方程,再进行预测其生产速度.【小问1详解】解:设前4组的频率分别为,,,,公差为,由频率分布直方图,得,即,解得,则,,所以中位数为.【小问2详解】解:由题意,得,,由所给公式,得,,所以回归直线方程为,则当时,,即估计该车间某位有16年工龄的工人的生产速度为80件/小时.18、(1);(2).【解析】(1)首先将圆的参数方程华为普通方程,再转化为极坐标方程即可.(2)首先联立得到,再求的长度即可.【详解】(1)将曲线C的参数方程,(为参数)化为普通方程,得,极坐标方程为.(2)联立方程组,消去得,设点A,B对应的极径分别为,,则,,所以.19、(1),;(2)证明见解析.【解析】(1)利用关系可得,根据等比数列的定义易知为等比数列,进而写出的通项公式;(2)由,将不等式左侧放缩,即可证结论.【小问1详解】当时,,,两式相减得:,整理可得:,而,所以是首项为2,公比为1的等比数列,故,即,.【小问2详解】,..20、(1),(2),【解析】(1)根据梯形的几何性质,即可求解;(2)表示出M,N的坐标,代入抛物线方程中,结合条件解得p值,继而求得拱高.【小问1详解】由题意,知,因为ABFM是等腰梯形,由对称性知:,所以,【小问2详解】由(1)知,所以点M的横坐标为-18,则N的横坐标为-(18-5)=-13.设点M,N的纵坐标分别为y1,y2,由图形,知设抛物线的方程为,,两式相减,得2p(y2-y1)=182-132=155,解得:2p=100故抛物线的方程为x2=-100y.因此,当x=-18时,所以桥梁的拱高OH=3.24+4=7.24m.21、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论